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The primary motor cortex (M1) is central for the learning and execution of dexterous
motor skills'3, and its superficial layer (layers 2 and 3; hereafter, L2/3) is akey locus of
learning-related plasticity"* . It remains unknown how motor learning shapes the way
inwhich upstream regions activate M1 circuits to execute learned movements. Here,
using longitudinal axonal imaging of the main inputs to M1L2/3 in mice, we show that
the motor thalamus is the key input source that encodes learned movements in experts
(animals trained for two weeks). We then use optogenetics to identify the subset of M1
L2/3 neurons that are strongly driven by thalamic inputs before and after learning.

We find that the thalamic influence on M1 changes with learning, such that the motor

thalamus preferentially activates the M1 neurons that encode learned movements
inexperts. Inactivation of the thalamic inputs to M1in experts impairs learned
movements. Our study shows that motor learning reshapes the thalamicinfluence
onMlto enable thereliable execution of learned movements.

Reliable execution of learned movements is a fundamental aspect
of adaptive behaviour, and is essential for an animal’s survival and
well-being. During repeated practice of amotor skill, the variability of
movements across trials decreases and the speed at which a desired
outcome is achieved increases, in a process known as motor learning.
Duringthis process, the motor circuitsin the brain undergo changes that
facilitate the reliable and efficient execution of the learned motor skill™®,

The primary motor cortex (M1) is a central locus for motor learning
and execution in the mammalian brain' . Even though not all move-
ments require M1 (ref. 9), and some M1-dependent motor skills can
become independent of M1 after long-term training'®", M1 is clearly
essential for theinitial learning of many dexterous motor skills. In par-
ticular, the superficial layer L2/3 of M1is a major locus of changes during
motor learning. Synapses onto M1L2/3 excitatory neurons reorganize
during motor learning* ¢, and this coincides with the emergence of
reproducible spatio-temporal activity in the M1L2/3 neural population
thataccompanieslearned movements'. M1L2/3 neurons drive deeper
layers of M1 that house neurons projecting subcortically and serve as
the output layer of M1 (ref. 12). Amodel has emerged in which M1L2/3
receives long-range inputs that interact with local recurrent circuits
to generate the skill-specific ensemble activity that dynamically drives
deeper-layer neurons to execute the learned motor skill. However,
several key questions remain, including the identity of the brain area
that provides the key input to drive the skill-specific M1L2/3 activity, the
specific M1L2/3 neurons it activates, and the way this input pathway
is shaped during motor learning. Cellular-level interactions across
brain areas are poorly understood, owing partially to the technical dif-
ficulties of identifying effective connectivity across areas—especially
longitudinally throughout learning.

Here, we investigate the main sources of long-range inputs to M1
L2/3. Usinglongitudinal axonal calcium imaging, we identify the motor
thalamus as the input area that provides the strongest excitation to M1
before and during alearned movement. We then establisha methodol-
ogy to identify the sparse group of M1L2/3 neurons that are strongly
drivenby thalamicinputs, and characterize their functional properties
during behaviour. We develop a computational method for aligning
paired high-dimensional multimodal dataacrossindividuals, and use it
to uncover the unique encoding properties of the thalamus-excited M1
L2/3 neurons. A longitudinal analysis reveals that learning refines the
thalamic influence on M1, such that thalamic inputs strongly activate
movement-preceding neuronsin experts. We propose that the precise
reorganization of the thalamocortical pathway is a crucial component
of motor learning.

Motor learning and M1 activity

Toinvestigate M1circuits that are associated with learned movements,
we used a cued lever-press task’. In this task, water-restricted mice were
trained under head fixation daily for one session per day for two weeks.
During training sessions, mice used their left forepaw to grasp alever.
Anauditory cuesignalled the answer period during whichalever press
past the threshold produced a water reward (Fig. 1a). In acomparison
of the expert stage (days 13-14) and the beginner stage (days1-2), we
found that the number of rewarded trials increased (Fig. 1b) in the
expert stage, and the times from cue to movement onset and from
cue to reward decreased (Fig. 1c). Movement trajectories became
more stereotyped inthe expert stage (Fig.1d and Extended Data Fig. 1),
a hallmark of motor learning.
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Fig.1| Thalamicinputs to M1 preferentially encode learned movementsin
experts. a, Schematic of the experimental set-up and task structure. Adapted
fromref.4.b, The number of rewarded trials increased over training (P< 0.001,
Wilcoxon rank-sum test). Circles correspond toindividual sessions. ¢, The time
from cue onset to movement onset and from cue onset to reward decreased
over training (P<0.001, rank-sum test). d, Left, median trial-by-trial correlation
coefficients of rewarded movement trajectories, averaged across mice.
Rewarded movements became more similar within (middle) and across (right)
sessions (P<0.01and P<0.05, rank-sumtest, respectively). e, Top, schematic
ofinjections to express axon-GCaMPé6s in differentinput areas and image their
axonsinnervating M1. Bottom, trial-averaged activity of movement-active
(top, sorted by onset timing, white), movement-suppressed (middle) and
indiscriminately active (bottom) axonal boutonsin thalamic (n =7 mice), S1
(n=4mice),cM1(n=7mice)and M2 (n =7 mice) inputs to M1 during beginner
(left) and expert (right) sessions, aligned to the onset of rewarded movements
(dashed lines). Each row represents one axonal bouton. f, The fractions of
motor thalamus, S1, cM1and M2 axonal boutons that are movement-active,
movement-suppressed and indiscriminately active. n for movement-active,

We next examined the ensemble activity of L2/3 neuronsinthe caudal
forelimb area of the right M1 by performing longitudinal two-photon
calcium imaging of the same population of neurons across training
(n=10imagingfields from 7 mice) (Extended Data Fig. 2a). A substantial
proportion of neurons exhibited movement-related activity, catego-
rized as either ‘movement-active’ or ‘movement-suppressed’ (Extended
DataFig.2b-d), withtheiractivity tiling the duration of rewarded move-
ments (Extended Data Fig. 1). The trial-by-trial correlation of popula-
tion activity patterns during rewarded movements increased during
learning, indicating the emergence of a reproducible activity pattern
(Extended Data Fig. 2e).
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Axonal boutons

movement-suppressed and indiscriminately active axonal boutons (beginner/
expert), respectively: thalamus: 1,133/1,441,356/644 and 687/755; S1: 432/238,
297/86 and 532/252; cM1: 638/454,180/201and 776/639; and M2:166/219,72/272
and 412/525. Inexperts, motor thalamic inputs exhibited the highest fraction of
movement-active boutons (x2 =288.736, degrees of freedom =3, P< 0.001). Post-
hoc pairwise z-tests with false-discovery-rate correction confirmed significant
differences between motor thalamicinputs and all other groups (P < 0.001 for
each comparison). g, Population-average activity of movement-active inputs
duringthe beginner (left) and expert (right) sessions, aligned to the onset of
rewarded movements (peak-normalized).In experts, the population-average
activity onset of only thalamic inputs preceded movements. h, Cross-validated
decodingaccuracy for distinguishing time points for rewarded movements
versus nomovements. Theactivity across multiple mice was combined as pseudo-
simultaneous populations (Methods). The decoding accuracy for thalamic
inputsinexperts was significantly higher than that for all other inputs (pairwise
t-tests with Holm-Bonferroni multiple-comparison correction, all corrected
P<107).Shaded areas show 95% confidence intervals of the mean over cross-
validation folds. For panelsb-d, fand h,*P<0.05,**P< 0.01and ***P<0.001.

Thalamicinputs encode learned movements

Previous studies showed that M1 activity is essential for executing
learned movements after two weeks of training"'**, M1 receives inputs
fromvarious brainregions™ %>, We hypothesized that specificinputs ini-
tiate the dynamics of M1L2/3 to drive the learned movement. To test this
idea, we started by identifying the primary sources of long-range inputs
to M1L2/3 neurons. We used a published dataset from an experiment
in which rabies-virus-based monosynaptic retrograde labelling was
performed with M1L2/3 excitatory neurons as starter cells'®. We identi-
fied theipsilateral motor thalamus (ventral anterior-lateral complex of



the thalamus (VAL) and ventral medial nucleus of the thalamus (VM))
and surrounding thalamic nuclei (ventral posterolateral nucleus of the
thalamus (VPL), ventral posteromedial nucleus of the thalamus (VPM)
and posterior complex of the thalamus (PO)), the ipsilateral somatosen-
sory cortex (S1), the contralateral M1 (cM1) and the ipsilateral second-
ary motor cortex (M2) as the four main input areas that accounted for
around 88% of the long-range inputs to M1L2/3 (Extended Data Fig. 3).
Next we examined the activity of these long-range inputs to the right
M1during motor learning. To do this, we expressed the axon-targeted
calcium sensor axon-GCaMPé6s” in one of the input areasin eachmouse,
andimaged the activity of their axons in M1during training (Fig.le). By
analysing fluorescence fromindividual axonal boutons, we found that
allfourinputs carry substantial movement-related activity throughout
learning (Fig.1fand Extended Data Fig. 4), but thalamicinputs exhibited
the highest proportion of movement-active axonal boutons (Fig. 1f).
Especially in expert sessions, the movement-active thalamic inputs
started before the onset of the learned movement, whereas the other
inputs were relatively delayed, indicating that thalamic inputs could
contribute to the initiation of the learned movement (Fig. 1g, right).
Next, to quantify the amount of movement-related activity in each
input, we used their activity to discriminate the time points of rewarded
movements versus time points without movement, using linear SVM
classifiers. Consistent with the other analysis above, thalamic inputs
at the expert sessions outperformed the other inputs’ decoding of
rewarded movements (Fig. 1h). Thus, after training, learned movements
are preferentially encoded by thalamic inputs to M1. Together, these
results suggest that thalamic inputs have akey rolein exciting M1L2/3
to drive learned movements.

Identifying thalamus-excited M1 neurons

Onthebasis of these observations, we hypothesized that thalamocor-
tical inputs activate a specific subset of M1L2/3 neurons to drive the
dynamics of the M1L2/3 population underlying the execution of the
learned movement. To test thisidea, we sought toidentify the M1L2/3
neurons strongly driven by thalamicinputs, using optogenetic stimula-
tion of thalamic axons in M1. To this end, we first validated our ability
to reliably excite thalamic axons in M1. We injected Cre-dependent
AAV encoding ChrimsonR™ and GCaMP6f" into the motor thala-
mus of Vglut2-Cre mice?®, and imaged thalamocortical axons in M1
(Extended DataFig. 5a). These axons showed strong and reliable activity
inresponse to optogenetic stimulation (Extended Data Fig. 5b). After
this validation, we combined optogenetic stimulation of thalamic axons
with two-photon calcium imaging of M1L2/3 neurons by expressing
ChrimsonR in the motor thalamus of CaMKII-tTA::tetO-GCaMP6s::V
glut2-Cre triple transgenic mice, in which GCaMPé6s is expressed in
cortical excitatory neurons (Fig. 2a-c). These optogenetic mapping
(opto-mapping) sessions were done before (session 0) and after (session
15) the two-week training (Fig. 2a). During the opto-mapping sessions,
we stimulated thalamic axons in M1while we imaged the activity of M1
L2/3 neurons. Thisapproachallowed us toidentify the M1L2/3 neurons
thatrespondtothe stimulation of thalamicinputs (Fig.2d and Extended
DataFig. 6). A subset (around 9%) of M1L2/3 neurons showed signifi-
cantly increased activity during thalamic stimulation (‘Th-excited’; we
note that they might not all be monosynaptically driven by thalamic
inputs). Afraction of neurons showed increased activity after the offset
of thalamic stimulation (‘Th-rebound’), but these neurons were very
rare (around 1%) and we did not study them further (Fig. 2e). We refer
to all other neuronsin the field of view (FOV) as ‘Th-non-responsive’.
We next considered the possibility that stimulation of thalamic
inputs leads to the activation of Th-excited neurons throughindirect
stimulation of other brain areas (that is, stimulation of axons in M1
activates thalamic neurons through backpropagation of action poten-
tials, which in turn activate other brain areas, which then indirectly
excite M1 neurons). To address this issue, we inactivated the motor

thalamus by local administration of the GABAA agonist muscimol and
stimulated thalamic axons in M1 while imaging the activity of M1L2/3
neurons (Extended Data Fig. 7a). The number of excited neurons was
similar before and after the injection of muscimolinto the motor thala-
mus (Extended Data Fig. 7b,c). Even though the thalamic injection of
muscimol might not eliminate all collateral activations, these results
supportthe notionthat Th-excited neurons in Ml are excited owing to
the local effects of thalamic axons in M1.

Although the overall fraction of Th-excited neurons was similar in
sessions 0 and 15 (Fig. 2e), the identity of Th-excited neurons changed
substantially. A subset remained consistently Th-excited before and
after learning (‘stable’ Th-excited; around half), but others either gained
(‘gain’ Th-excited neurons) or lost (‘loss’ Th-excited neurons) this prop-
erty over the course of training (Fig. 2f).

Th-excited neurons encode learned movements

Equipped with theidentity of M1L2/3 neurons that are strongly driven
by thalamocortical inputs, we asked whether their activity patterns dur-
ing training are distinct from those of Th-non-responsive neurons. We
defined Th-excited neurons in beginner and expert stages separately
(session O for beginner mice and session 15 for expert mice; Fig. 2a).
We examined whether Th-excited and Th-non-responsive popula-
tions differ in their overall movement-related information using the
same decoding analysis as in Fig. 1. In beginners, Th-excited neurons
slightly outperformed Th-non-responsive neurons when the number
of neurons was matched. Furthermore, Th-excited neurons showed
astrong increase in their movement encoding during learning, and
Th-excited neurons in expert mice contained substantially more
movement-related information than did the Th-non-responsive popula-
tion (Fig. 2g). This strong encoding of rewarded movementsin expert
Th-excited neurons aligns with our similar observation in the activity
of thalamicinputs (Fig. 1h).

Weproceededtoevaluatethemovement-relatedactivityin Th-excited
and Th-non-responsive populations, and found that Th-excited
neurons exhibited higher activity than Th-non-responsive neurons
near the initiation of rewarded movements, especially in experts
(Fig. 2h,i and Extended Data Fig. 8). This higher movement-related
activity of Th-excited neurons is due partially to the higher fraction
of movement-excited neurons in the Th-excited population (Fig. 2j).
The fraction of movement-excited neurons in the Th-excited popu-
lation increased during learning, and in expert mice, a majority of
Th-excited neurons showed movement-active responses (Fig. 2j,
bottom).

The strong encoding of rewarded movements by Th-excited neurons
was not only due to the larger fraction of movement-active neurons.
A decoding analysis using only movement-active neurons found that
Th-excited movement-active neurons in experts are more strongly
modulated by rewarded movements than are Th-non-responsive
movement-active neurons. This contrasts with similar decoding
accuracies between movement-active neurons in Th-excited versus
Th-non-responsive populations in beginners (Fig. 2k). Consistent
with these observations, movement-aligned population-average
activity showed stronger movement modulation of Th-excited
movement-active neurons in experts (Fig. 2m). This difference was
not observed in beginners (Fig. 21). Th-excited movement-active neu-
rons were active in a larger fraction of rewarded movements (higher
‘reliability’) than Th-non-responsive movement-active neurons, dur-
ing expert sessions only (Fig. 2n, bottom). These results suggest that
in experts, Th-excited neurons exhibit stronger movement-related
modulation than Th-non-responsive neurons. However, we acknowl-
edge that strictly separating the effects of prevalence and individual
response strength is difficultin the presence of noise.

In addition, the timing of activity onset relative to the onset of
rewarded movements showed learning-related changes. In beginners,
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Fig.2|See next page for caption.

theactivity onset of Th-excited movement-active neurons was not ear-
lier than that of Th-non-responsive movement-active neurons (Fig. 20,
top), butitshifted earlierin experts, such that amajority of Th-excited
movement-active neurons in experts started their activity before or
around movement onset (Fig. 20, bottom).

To summarize these results, over learning, Th-excited neurons
become more strongly engaged during rewarded movements and
shift their activity timing earlier relative to movement onset. Together
with the similar observationsinthe activity of thalamicinputs (Fig.1),
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these results support the notion that, with learning, the thalamocorti-
cal pathway becomes the key driver of M1L2/3 activity underlying the
learned movement. Specifically, we propose that the thalamic inputs
drive asubset of movement-active neuronsin M1L2/3, which will then
propagate the activity to other movement-active neuronsin M1through
local connectivity.

Therefore, we hypothesized that Th-excited neurons have dense
and specific connections to nearby neurons. However, we do not have
adirect readout of synaptic connectivity of imaged neurons. Instead,



Fig.2| Thalamus-excited M1L2/3 neurons preferentially encodelearned
movementsinexperts. a, Top, experimental timeline. Bottom, max-intensity
projection of in vivo two-photon (2p) fluorescence images of the same FOVin
M1L2/3imaged at the pre-training (session 0) and post-training (session 15)
opto-mapping sessions and thefirst (session1, beginner) and last (session 14,
expert) training sessions. Scale bar, 50 pm. b, Experimental strategy. ChrimsonR
isexpressed inthalamic neurons and imaging and optogenetic stimulation are
doneinMLl.c, Coronalsections of the motor thalamus (top) and M1 (bottom)
showing the expression of ChrimsonR-tdTomato in thalamic neurons and
GCaMPésin corticalneurons. Scale bars,1mm.d, Bottom, single-trial responses
ofexample Th-excited (left) and Th-rebound (right) neurons. Top, trial averages.
e, Fractions of Th-excited, Th-rebound and Th-non-responsive neurons during
pre-training (session 0) and post-training (session 15) opto-mapping sessions
(n=7mice; 1,494 and 1,485 neurons for sessions 0 and 15, respectively).
f,Reorganization of individual neurons’ responses to the stimulation of thalamic
inputs during pre-training (session 0) and post-training (session 15) opto-
mapping sessions. Three categories of Th-excited neurons. About half of
Th-excited neurons were Th-excited in both sessions (stable, n =47 neurons),
whereastherest were only Th-excited in pre-training (loss, n=51) or post-
training (gain, n=49) sessions. g, Cross-validated decodingaccuracy for
distinguishing rewarded movement and non-movement time points, computed
similarly to Fig.1h. Th-excited neurons outperformed Th-non-responsive
neuronsinexperts (t-test, P<10'?) and in beginners (¢-test, P < 0.01). Shaded
areas show 95% confidence intervals of the mean over cross-validation folds.

h, Trial-average activity of all Th-excited neurons (blue; 111 neurons) and
Th-non-responsive neurons (pink; 1,719 neurons) frombeginner sessions
aligned torewarded movement onset (dashed line). Mean +s.e.m.P<0.05,
rank-sum teston baseline (1.5 sto -1s before movement onset) subtracted
movement-related (0-0.5 s after movement onset) activity. i, Same as hbut for
experts (115 Th-excited neurons, 1,365 Th-non-responsive neurons). P< 0.001,
rank-sumtest. j, Fractions of movement-active, movementsuppressed and
indiscriminately active neurons within the Th-excited and Th-non-responsive

populationsinbeginners (top) and experts (bottom). k, Same as g but for
movement-active neurons. Th-excited movement-active neurons outperformed
Th-non-responsive movement-active neurons in experts (¢-test, P<107°) but not
inbeginners (t-test, P=0.128; NS, not significant). Shaded areas show 95%
confidenceintervals of the mean over cross-validation folds. I, Same as hbut
formovement-active neurons (53 Th-excited neurons, 501 Th-non-responsive
neurons). P=0.49, rank-sum test. m, Same asibut for movement-active neurons
(69 Th-excited neurons, 444 Th-non-responsive neurons). P < 0.05, rank-sum
test.n, Histograms of the movement reliability of individual neurons, defined
asthefraction of rewarded movements during which the neuronis active. Top,
nosignificant difference in the movement reliability of Th-excited movement-
activeneurons and Th-non-responsive movement-active neuronsinbeginners
(P=0.93, Wilcoxon signed-rank test; signed-rank test). Bottom, Th-excited
movement-active neurons have higher reliability than Th-non-responsive
movement-active neuronsinexperts (P<0.01, signed-rank test). o, Histograms
of theactivity onset of individual movement-active neurons. Top, no significant
difference between Th-excited movement-active neurons and Th-non-
responsive movement-active neuronsinbeginners (P=0.05, signed-rank test).
Bottom, the activity onset of Th-excited movement-active neuronsis earlier
than that of Th-non-responsive movementactive neurons and precedes
movementsinexperts (P<0.05,signed-rank test). Vertical broken lines indicate
the median. p,q, Correlation-based functional connectivity. p, Inbeginners,
Th-excited neurons have a higher connection probability than Th-non-
responsive neurons with movementactive neurons (P < 0.001, signed-rank
test) but not with movement-suppressed neurons (P = 0.805). Right,
schematic representing connection probabilities at beginner sessions. q, In
experts, Th-excited neurons have a higher connection probability than Th-non-
responsive neurons withmovement-active neurons (P < 0.001, signed-rank test)
butalower connection probability with movementsuppressed neurons
(P<0.05, signed-rank test). All tests are two-sided. For panels g-i, kand m-q,
*P<0.05,**P<0.0land ***P<0.001.

we inferred their functional connectivity using a correlation-based
connectome inference method (FARCI)*. We found that Th-excited
neurons had anoverall higher connection probability to other neurons
at both the beginner and the expert stages (Fig. 2p,q and Extended
DataFig. 9). This higher connection probability of Th-excited neu-
rons was specifically to movement-active neurons. By contrast, the
connection probability to movement-suppressed neurons was not
different between Th-excited neurons and Th-non-responsive neu-
rons in beginners. In expert sessions, the connection probability to
movement-suppressed neurons was significantly lower for Th-excited
neurons than for Th-non-responsive neurons. Thus, Th-excited neu-
rons are specifically connected to movement-active neurons. In sum-
mary, the functional connectivity patterns of Th-excited neurons
supporttheirroleinselectively relaying thalamicinputactivity to the
movement-active populationin M1L2/3.

We next addressed the question of whether thalamicinputsin experts
selectively activate Th-excited neurons, or whether Th-excited neurons
are generally more excitable, such that any stimulation tends to acti-
vate them. To distinguish between these possibilities, we performed
analogous stimulation experiments for the other inputs (S1, cM1and
M2; Extended Data Fig. 10a).

Stimulation of inputs from S1, cM1 and M2 activated substantially
fewer neuronsinM1L2/3 thandid thalamicinputstimulation (Extended
Data Fig.10b). Furthermore, the few S1-, cM1- and M2-excited neu-
rons did not show enhanced movement-related activity in expert ses-
sions, in contrast to Th-excited neurons (Extended Data Fig. 10c-h).
Theseresults underscore the unique role of thalamicinputsin driving
movement-encoding M1L2/3 neurons in experts.

Specificencoding in Th-excited neurons

Theresultsabove suggest that Th-excited neuronsin experts preferen-
tially encode the learned movement. We sought to define the specific

behavioural features encoded by the population of Th-excited neurons.
However, this was challenging, in part because of the small number of
Th-excited neurons in each imaging field. To overcome this issue, we
developed shared representation discovery (ShaReD), acomputational
technique that extends canonical correlation analysis (CCA) for aligning
high-dimensional paired multimodal dataacross individuals (Fig. 3a).
In short, ShaReD identifies common feature combinations across all
individuals in one modality (behavioural features) that are maximally
correlated with specific feature combinationsin another modality (neu-
ral activity) ineachindividual. Essentially, ShaReD identifies consistent
projections of the behavioural data (using weights for behavioural
features) commontoallindividuals that correlate with projections of
theneural datain eachindividual (using weights assigned to neurons).
This allowed us to use the neural activity from all mice to identify the
same behavioural features, thus overcoming the limited number of
neurons in each mouse.

Thebehavioural features we considered were the lever position and
lever speed at 21 temporal delays between-1sand +1 srelative to neural
activity. Thus, the maximum dimensionality of behavioural features
considered was 42. Applying ShaReD to movement-active neurons
in the Th-excited and Th-non-responsive populations separately in
expert-session data, we identified the behavioural components that
were highly correlated with neural activity across all mice. We focused
on the first two components with the highest correlations (Extended
Data Fig. 11b). The first behavioural component for Th-excited neu-
rons corresponded mostly to acombination of lever positionand lever
speed at positive lags of around 200 ms, indicating that the activity of
Th-excited neurons preceded movements by around 200 ms (Fig. 3b).
Conversely, the first behavioural component of the Th-non-responsive
neuronswasbroaderintime and peaked at azero-to-slightly-negative
delay,implying thatthe activity of these neurons relates more to current
orimmediate past movements (Fig. 3b). The second behavioural com-
ponent wasrelated mostly to acombination of future lever position and
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past lever speed for both Th-excited and Th-non-responsive neurons
(Extended Data Fig. 11a). To evaluate the specificity of the temporal
relationship that we discovered with ShaReD—in which the activity of
movement-active Th-excited neurons precedes behavioural features
by around 200 ms—we performed a further analysis. We temporally
shifted the behavioural component weights (which already capture this
approximately 200 ms precedence) and decoded the shifted behav-
ioural projections using the activity of Th-excited neurons (Extended
DataFig. 11c). The decoding accuracy peaked at a shift of zero, con-
firming that the leading temporal relationship identified by ShaReD
was indeed optimal.

We nextinvestigated the type of movements that these behavioural
components represent, and how the behavioural componentsrelate to
the learned movement. We projected rewarded movements onto the
first behavioural components of Th-excited and Th-non-responsive
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Fig.3|ShaReD reveals that Th-excited neuronsin experts encode upcoming
learned movements. a, Schematic of ShaReD, an extension of CCA for
generalizing across multiple animals. Using synthetic datasets for two
individuals (i), we visualize neural data (X;) and behavioural data (Y, in three
dimensions. Each axis represents one neuron (left column) or one behavioural
feature (right column). ShaReD finds the optimalindividual neural projection
vector a;and behavioural projection vector b that maximize the correlation
between X;a;and Y;bacrossallindividuals. Red arrows indicate projection
vectors for the first component. If the projected datais correlated, the paired
points will align near the diagonal in the joint space (middle column). b, Weights
(unit L2-norm) for the first ShaReD behavioural component for movement-active
Th-excited neurons (blue) or Th-non-responsive (pink) neurons. Shaded
areas show 95% confidence intervals of the mean over cross-validation folds.
For Th-non-responsive neurons, weights are computed from 50 neuron
samplings to match the counts of Th-excited neurons and then averaged.

The firstbehavioural component for Th-excited neurons corresponds mainly
toacombination of the lever position and the lever speed for movements
following the neural activity by around 200 ms, whereas Th-non-responsive
neurons correlate more with past movements. Although overall weight signs
arearbitrary, therelative signs between position and speed weights must be
maintained to preserve their relationship with the underlying movement
dynamics. ¢, Projections of non-stereotypical movements (correlation < 0.4
withlearned movement pattern; left) and stereotypical movements
(correlation > 0.7; right) onto the first behavioural component identified

for Th-excited (blue) and Th-non-responsive (pink) neurons. The learned
movement pattern was defined as the average lever position trace from
movementonsettolsafter onset, usingarandomly selected half of rewarded
movements per session. Mean +s.d. fromteniterations of random sampling.
Th-excited neurons preferentially encode upcoming learned movements.

neurons (Fig. 3¢). We analysed these projections separately for move-
ments with low and high similarity to the learned movement pattern
(Methods). The projections onto the first behavioural component of
Th-excited neurons consistently preceded those of Th-non-responsive
neurons across all movements. Notably, for movements that were
highly similar to the learned movement, the Th-excited projections
exhibited astronger modulation amplitude (Fig. 3¢, right), compared
with low-similarity movements (Fig. 3¢, left). Thus, the combina-
tion of behavioural features that best correlates with the activity of
Th-excited neuronsis maximized near the onset of the learned move-
ment. These observations suggest that Th-excited neuronsinexperts
encode the learned movement, with substantial activity preceding
the movement.

Refinement of the thalamic influence on M1

We have shownthat Th-excited neuronsin experts preferentially encode
the learned movement, and that this preferential encoding emerges
during learning. The improvement during learning could arise from
two scenarios, which could co-exist. In the first scenario, the same
neurons are Th-excited throughout learning, but they improve their
encoding of the learned movement during learning. In the second sce-
nario, different neurons are Th-excited before and after learning, with
the neurons encoding the learned movement becoming Th-excited,
and/or the neurons with poor encoding losing their responsiveness
for thalamic inputs. We evaluated these scenarios by examining the
movement-related activity of stable, loss, and gain Th-excited neurons
asdefined above (Figs. 2fand 4a). Inthisnomenclature, stable and loss
neurons are Th-excited in beginners, and stable and gain neurons are
Th-excited in experts. Discriminating between rewarded movement
and non-movement time points, we found that, notably, the popula-
tion that best encoded rewarded movements in beginners was the
gain neurons that were not Th-excited in beginners, whereas the loss
neurons had the lowest decoding accuracy (Fig. 4b, left). In experts,
the stable and gain neurons substantially improved their encoding
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experts. a, Examplelongitudinally recorded neurons and their trial-averaged sessions.d, Same as b but for movement-active neurons. Left, in beginners,
responses to the optogenetic stimulation of thalamic inputs. One each of bothstable and gain movement-active neurons were better thanloss

stable, loss and gain Th-excited neuronsis shown.b, Cross-validated decoding movement-active neurons (pairwise t-test with Holm-Bonferroni correction,
accuracy for discriminating between rewarded movement and non-movement P<0.001and P<107%). Gainmovement-active neurons were better than stable

time points, similar to Fig. 1h. Shaded areas show 95% confidence intervals of neurons (P<0.01).Right, inexperts, stable and gain movement-active neurons
the mean over cross-validation folds. Left, in beginners, gain neurons had a were better thanloss movement-active neurons (pairwise t-test with Holm-
higher decoding accuracy than stable and loss neurons (pairwise t-test with Bonferronicorrection, P<107* and P<107°). Stable movement-active neurons
Holm-Bonferronicorrection, P< 0.01for gain versus stable, P< 0.01for loss were better than gainneurons (P<107*). e, Movementreliability of stable, loss
versusstable, P<107*for gain versus loss). Right, in experts, stable and gain and gain Th-excited movement-active neuronsin beginners (left) and experts
neurons were higher thanloss neurons (pairwise t-test with Holm-Bonferroni (right). Box plot elements: centre line, median; box limits, upper and lower
correction, P<10 " forloss versusstable, P <108 forloss versus gain). quartiles; whiskers, 1.5x interquartile range; points, outliers. For panelsbandd,
Inaddition, stable neurons were higher than gain neurons (P<107%). **P<0.0land ***P<0.001.

of rewarded movements during learning and clearly outperformed

the loss neurons (Fig. 4b, right). The encoding of loss neurons did  Thinputs are required in experts but notin beginners
notimprove over learning. The fraction of movement-active neurons  Theresults so far suggest that a specific drive of Ml movement-active
increasedinthe stable and gain populations, but notinthelossneurons, neurons by thalamicinputs is crucial for generating learned move-
partially explaining the decoding results above (Fig. 4c). However, ments. Toassess the functionalimportance of thalamic activity in the
even when we focused our decoding analysis on movement-active  expert behaviour, we examined the effect of inactivating the motor
neurons of each population, the same trends were observed. Namely, thalamus onbehaviour.

in beginners, decoding by movement-active neurons was best in the To inactivate motor-thalamus neurons, we unilaterally expressed
gain population, followed by the stable and then the loss neurons  inhibitory DREADDs (hM4Di*) or tdTomato as a control in tha-
(Fig. 4d, left). In experts, the stable movement-active neurons out- lamic neurons by injecting AAV-hSyn-DIO-hM4D-mCherry (or
performed the gain population, which, in turn, was better thanthe = AAV-FLEX-tdTomato) into the motor thalamus of Vglut2-Cre mice
loss population (Fig. 4d, right). In addition, in experts, stable and  (Fig.5a). These mice were trained for two sessions without manipula-
gain movement-active neurons had a higher reliability for rewarded tion. Then, on day 3, we acutely inactivated the motor thalamus by
movements (Fig. 4e) and an earlier activity onset relativetomovement  intraperitoneal (i.p.) injection of clozapine-N-oxide (CNO) (Fig. 5b). This
onset than did loss movement-active neurons (Extended DataFig.12b),  inactivation had nosignificant effect on performance inthese beginner
although these differences did not reach statistical significance, prob-  mice (Fig. 5¢). By contrast, when we trained another group of mice for
ablybecause of the limited numbers of neuronsineach category. These 13 sessions to reach the expert stage and then inactivated the motor
results indicate that the learning-related reorganization of the tha-  thalamusbyi.p.injection of CNO, their performance was significantly
lamic influence on M1involves both of the two scenarios discussed.  impaired, asindicated by fewer rewarded trials and increased time from
Namely, the stably Th-excited neurons improve their movement cueto reward in the hM4Di group (Fig. 5d,e). Thus, motor-thalamus
encoding duringlearning. Furthermore, some of the neuronsthatare activity is crucial for the expert but not for the beginner behaviour.
strongly movement-encoding but not Th-excited inbeginnersbecome  This aligns with the refinement of thalamic influence on M1 during
Th-excited in experts. Conversely, some of the neurons with poor learning described above.

movement encoding lose their responsiveness to thalamic inputs as The effects of motor-thalamus inactivation could in theory be medi-
learning progresses. ated by thalamic projections to brain areas other than M1. To directly
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Fig.5|Thalamicactivityisrequired for the execution oflearned
movements. a, Top, experimental strategy. hM4Di-mCherry or tdTomato was
expressed in motor thalamic neurons and CNO was administeredi.p. Bottom,
coronal sections showing hM4Di-mCherry expression in the motor thalamus.
Blue, DAPI. Scale bars,1 mm (top); 0.5 mm (bottom). b, Experimental timeline
for motor-thalamusinactivationin beginners. ¢, No significant difference in
the number of rewarded trials (left; P=1, rank-sum test), the time from cue to
reward (right; P=0.74, rank-sum test) and the time from cue onset to the onset
ofthe first movement (middle; P= 0.35, rank-sum test) inbeginner mice.n=12
hM4Dimice and n=8tdTomato mice. Circles correspond to individual mice.
d, Experimental timeline for motor-thalamus inactivationinexperts. e, CNO
administrationinexpertsresulted inasignificantly lower number of rewarded
trials (left, P< 0.01, rank-sum test), asignificantly longer time between cue and
reward (right, P< 0.05, rank-sum test) and a non-significantincreasein the time
from cue onset to movement onset (middle, P=0.23, rank-sum test) in the

examine the effect of motor-thalamus inputs to M1, we selectively
inactivated motor-thalamus axons in M1. Using the same approach,
we expressed hM4Di or tdTomato in the motor thalamus (Fig. 5f), and
trained these mice for 13 daysto expert level. We then locally adminis-
tered CNO into M1onsession 14 (Fig. 5g). This manipulation, similarly,
resulted in fewer rewarded trials and increased cue-to-reward timesin
the hM4Di group (Fig. 5h). Thus, motor-thalamus activity—and specifi-
cally, itsinputs to M1—is necessary for the precise execution of learned
movements in experts.

Discussion

Our results reveal that thalamic inputs to M1 are an essential driver
for the initiation and execution of learned movements. Our findings
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hM4Digroup (n=9 mice) compared with the tdTomato group (n = 6 mice).
Circles correspond to individual mice. f, Experimental strategy. hM4Di-
mCherry or tdTomato was expressed inmotor thalamic neurons and CNO was
administered locally to M1.g, Top, coronal sections showing hM4Di-mCherry
expressionin thalamic axonsin M1.Scale bar,1 mm. Bottom, experimental
timeline for inactivation of thalamic axonsin M1in experts. h, Local
administration of CNO inMlinexperts resulted in asignificantly lower number
of rewarded trials (left; P< 0.05, rank-sum test), a significantly longer time
between cueand reward (right; P< 0.05, rank-sum test), and a non-significant
increasein the time from cue onset to movement onset (middle; P=0.26,
rank-sumtest) in the hM4Di group (n = 6 mice) compared with the tdTomato
group (n=3mice). Circles correspond to individual mice. All tests are
two-sided. i, Model schematic. Arrows represent functionally connected
neurons. For panelseandh,*P<0.05and **P<0.01.

are consistent with previous studies highlighting the importance of
thalamicinputsin controlling voluntary movements®?. Furthermore,
our longitudinal analysis during learning provides a new perspective
on how this learned circuit emerges from a precise change in the
cellular-level influence of the motor thalamus on M1.

Thalamicinputs to M1inlearned movements

Here we provide several lines of evidence to support amodel in which
the brain generates the M1 activity pattern to execute learned move-
ments. In this model, immediately before the initiation of the move-
ment, the motor thalamus activates a small group of core neurons in
ML1. This specific excitation gets amplified and transformed by selective
connectivity in M1, leading to the spatio-temporal population activity
that drives the learned movement.



Thedegree ofautonomy of Mlin producing the movement-generating
activity pattern in M1 has been debated®*3!, In one extreme, M1
could function as an autonomous dynamical system, which gener-
ates complex activity patterns through Ml-intrinsic connectivity,
perhaps in response to non-specific inputs. In the other extreme, M1
could be a purely passive machine that simply reflects the specific
and time-varying input without transforming it. Our results do not
support either of these extremes. Rather, we propose that specific
and time-varying inputs from the motor thalamus interact with local
connectivity in M1to produce the movement-generating activity pat-
tern. The balance between inputs and intrinsic connectivity might
depend onthe complexity of the learned skill: longer or more intricate
sequences mightinvolve multiple local circuits, each driven by specific
thalamicinputs, forming a sequence of motor modules that collectively
generate the skill.

Ourresults extend previous studies highlighting the role of thalamic
inputsin enabling M1 toinitiate learned movements®>*, Our approach
uncovered a small fraction (around 9%) of M1L2/3 neurons that are
strongly driven by thalamocorticalinputs. Although these Th-excited
neurons might not allbe monosynaptically driven by thalamicinputs,
they are still likely to be excited by local effects of thalamic inputs in
M1, because Th-excited neurons were not excited by stimulation of
the other main inputs (Extended Data Fig. 10). It is also likely that our
approachonlyreveals strong connections, and excitation thatis below
thethreshold for spike generation or below the limit of detection by cal-
ciumimaging would remainundetected. Furthermore, thalamicinputs
to M1L2/3 come mostly from the motor thalamic nuclei, including VAL
and VM, and from nearby nuclei such as VPM, VPL and PO (Extended
Data Fig. 3). Dissociating potentially distinct functions of M1 inputs
from these nuclei would provide more detailed descriptions of the
neural circuits that underlie learned movements®*?>3*, Regardless,
our model resembles what was proposed in astudy in zebra finches®,
which suggested that the motor thalamic nucleus uvaeformis activates
asubset of neuronsinthe zebra finch song nucleus HVC (homologous
to the primary or premotor motor cortex inmammals®) to initiate sing-
ing. The conservation of this circuit motif across evolution underscores
itsimportance for learned behaviours.

Motor learning sculpts the thalamus-MI circuit

Our longitudinalinvestigation identified anumber of learning-related
changes that contribute to the operation of the expert circuit. First,
the amount of movement-related information in the thalamic input
activity increased. Second, possibly as aresult of the first, the stably
Th-excited neurons increased their movement-related activity. We
note that plasticity in downstream circuits could also contribute to
this change. Third, some of the neurons with strong movement-related
activity in beginners that were not Th-excited gained Th responsive-
ness. Fourth, some of the Th-excited neurons in beginners with low
movement-related activity lost their Th responsiveness after learning.
Finally, the functional connectivity within M1 became more refined.
These parallel changes ensure that thalamic inputs selectively target
the correct neurons to drive the learned movement.

The third and fourth changes suggest that the motor thalamus learns
to activate the right neurons and to stop driving the wrong neurons.
Such a reorganization probably requires precise plasticity during
learning. Indeed, motor learning induces plasticity of both thalamo-
cortical axonal boutonsinnervating M1 (ref. 32) and local M1 dendritic
spines**?*3% and spine plasticity of M1L2/3 neurons during motor
learning has been shown to be directed to form synaptic clusters dedi-
cated to thelearned movement*’. These synaptic changes coincide with
large-scale changes in the transcriptional states of M112/3 neurons®.
We propose that specific, targeted thalamocortical plasticity refines
the thalamocortical pathway so that the motor thalamus activates the
appropriate subset of M1L2/3 neurons to initiate the process of gen-
erating learned movements. Other mechanisms, such as cell-intrinsic

changes in excitability*’, might also contribute to such learning-related
reorganizations. The parallel refinement of the thalamocortical path-
way and local recurrent connectivity within M1resultsin a precise cir-
cuit to generate a reproducible pattern of activity dedicated to the
learned movement (Fig. 5i), composed of Th-excited neurons that are
functionally connected to movement-active neurons. This functional
connectivity might be dynamically gated by network states, which
could explain why our stimulation during the opto-mapping sessions
did not lead to full-blown movement-generating population activity.
Notably, inactivation of the motor thalamus did not affect thisbehav-
iourinbeginner mice. Itis possible thatamore complete inactivation
could lead to behavioural effects in beginners, but the same manipu-
lation significantly impaired the behaviour in experts, supporting
anincreasing role of the motor thalamus in movement generation as
learning progresses. We also note that previous studies have found that
extensive training over months can make the movements that are at
first M1-dependent become Ml-independent’®", The expert stage in
our currentstudyis astage at which Ml is still crucial for the behaviour.
These observations highlight that the brain has multiple circuits that
cangenerate similar behaviours, and the degree of learningis a deter-
minant of which circuitis used. Furthermore, other long-range inputs
that we examined also exhibited learning-related changes in activity.
Future studies should dissect the specific contributions of these inputs
to the dynamics and plasticity of M1 circuits during motor learning.

ShaReD

To understand the relationship between the ensemble activity of the
smallnumber of Th-excited neurons per animal and behaviour, we devel-
oped an analytical approach that we termed ShaReD. This technique
builds on CCA*, whichidentifies correlations between neural features
andbehavioural features, allowing both the behavioural feature space
andthespace of allneurons’ activities to be high-dimensional. This high
dimensionality calls for a systematic investigation of the relationship
between neural population activity and combinations of behavioural
features. Although previous methods have examined these relationships
by jointly modelling neural and behavioural dynamics, they oftenlack
generalizability acrossindividuals***, or necessitate identical behaviour
betweenindividuals*. ShaReD takes a different approach by identifying
asingle behavioural projection shared across individuals.

Applying ShaReD to our datarevealed specific behavioural subspaces
(thatis, combinations of lever position and speed at different time lags)
that were commonly correlated withindividual subspaces of Th-excited
neuron activity across individuals. These specific subspaces within
the high-dimensional behavioural space would have been difficult to
identify without the unsupervised approach facilitated by ShaReD.
We present ShaReD as ageneralizable dimensionality reduction tech-
nique to identify specific behavioural modes that are shared across
individuals and to learn how they relate to patterns of neural activity
in different individuals.

ShaReD operates on the assumption that there are common com-
binations of behavioural features encoded across individuals, and
identifies these common components. Thus, it is designed to mostly
ignore variability of behavioural encoding across individuals. This is
auseful property, but also alimitation that should be considered, and
we stress the importance of using multiple analytical approaches to
investigate how neural activities represent behaviours that might be
heterogeneous across individuals.
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Methods

Mice

Allanimal procedures were performed in accordance with guidelines
and protocols approved by the UCSD Institutional Animal Care and
Use Committee and the National Institutes of Health (NIH). C57BL/6
(Carles River), Vglut2-Cre (Vglut2-ires-cre, JAX stock 016963),
CaMKII-tTA (B6;CBA-Tg(Camk2a-tTA)IMmay/J, JAX stock 003010)
and tetO-GCaMPé6s (B6;DBA-Tg(tetO-GCaMP6s)2Niell/], JAX stock
024742) mice were group-housed in disposable cages with stand-
ard bedding in atemperature-controlled room (around 21 °C) with a
reversed light cycle (10:00-22:00: dark). All experiments were per-
formed during the dark cycle. Male and female mice were used at
random for experiments.

Surgeries and virus injections

Adult mice (seven weeks or older) were anaesthetized with 1-2%
isoflurane and injected with Baytril (10 mg kg™), dexamethasone
(2 mg kg™ and buprenorphine (0.1 mg kg™ subcutaneously at the
beginning of surgery to prevent infection, inflammation and discom-
fort. A custom-built head-plate was glued and cemented to the skull.
For two-photonimaging experiments, acraniotomy (around 3 mmin
diameter) was performed over the right caudal forelimb area of M1,
centredat 0.3 mmanterior and 1.5 mm lateral from the bregma. Aglass
window was implanted over the craniotomy. The edges between the
window and the skull were filled with Vetbond (3M). The window was
further secured with cyanoacrylate glue and dental acrylic.

For imaging thalamic projections to M1, virus solutions of AAVS5-
hSyn-FLEX-axon-GCaMPé6s (Addgene viral preparation 112010) were
injected with glass pipettesinto the following coordinates of Vglut2-Cre
mice: 1 mm posterior, 1 mm lateral to bregma at a depth of around
3.7 mm from the pia (approximately 0.3 pl). Pipettes were left in the
brain for 15 min after each injection to minimize backflow. Imaging
was performed around four weeks after surgery.

For imaging S1, cM1 and M2 projections to M1, virus solutions of
AAV5-hSyn-FLEX-axon-GCaMPé6s and AAV1-CMV-PI-Cre were injected
withglass pipettes into the following coordinates: S1: 0.8 mm posterior,
2.1mmlateraltobregmaatadepth of around 0.25-0.5 mm from the pia
(approximately 0.1 pl); cM1: 0.3 mm anterior, 1.5 mm lateral tobregma
atadepth ofaround 0.25-0.5 mm from the pia (approximately 0.4 pl);
M2 (rostral forelimb area): 2.5 mm anterior, 0.9 mm lateral to bregma
atadepthofaround0.25-0.5 mm fromthe pia (approximately 0.2 pl).
Pipettes were left in the brain for 15 min after each injection to avoid
backflow. Imaging was performed around four weeks after surgery.

Forinvivo two-photonimaging of ChrimsonR axons, virus solutions
of AAV1-hSyn-FLEX- GCaMP6f (Addgene viral preparation100833) and
AAV5-hSyn-FLEX-ChrimsonR-tdTomato (Addgene viral preparation
62723) wereinjected into the following coordinates of Vglut2-Cre mice:
1mm posterior, 1 mm lateral to bregma at a depth of around 3.7 mm
from the pia (approximately 0.4 pl).

Forinvivo two-photonimaging of M1L2/3 neurons combined with
optogenetic stimulation of thalamocortical axons, virus solutions
of AAV5-hSyn-FLEX-ChrimsonR-tdTomato were injected into the fol-
lowing coordinates of CaMKII-tTA::tetO-GCaMPé6s::Vglut2-Cre triple
transgenic mice: 1 mm posterior, 1 mm lateral to bregma at a depth
of around 3.7 mm from the pia (approximately 0.4 pl). For in vivo
two-photon imaging of M1 L2/3 neurons combined with optoge-
netic stimulation of S1, cM1 and M2 axons, virus solutions of AAV1-
hSyn-ChrimsonR-tdTomato were injected into the following coor-
dinates of CaMKII-tTA::tetO-GCaMPé6s transgenic mice: S1: 0.8 mm
posterior, 2.1 mmlateral tobregmaat adepth of around 0.25-0.5 mm
fromthe pia (approximately 0.1 pl); cM1: 0.3 mm anterior, 1.5 mm lateral
to bregma at a depth of around 0.25-0.5 mm from the pia (approxi-
mately 0.4 pl); M2 (rostral forelimb area): 2.5 mm anterior, 0.9 mm
lateral to bregma at a depth of around 0.25-0.5 mm from the pia

(approximately 0.2 pl). Experiments were performed around six weeks
after surgery.

For motor-thalamus inactivation, virus solutions of AAV5-hSyn-
DIO-hM4Di-mCherry (Addgene viral preparation 44362) (diluted 1:5)
or AAVI-FLEX-tdTomato (Addgene viral preparation 51503) (control
group) were injected into the following coordinates of Vglut2-Cre mice:
1 mm posterior, 1 mm lateral to bregma at a depth of around 3.7 mm
from the pia (approximately 0.4 pl). Experiments were performed
around four and eight weeks after surgery fori.p. CNO administration
and local M1 CNO injection, respectively.

Behaviour

Waterrestriction started 1-1.5 weeks before the behavioural training.
Micereceived progressively lower amounts of drinking water until sta-
bilizing at1 ml per day. Weight was constantly monitored to ensure no
more than30% of the starting body weight was lost. Mice were trained
to perform the lever-press task one session per day for 14 days under
amicroscope. The hardware and software used for behavioural train-
ing have been previously described®. In brief, the lever comprised a
piezoelectric flexible force transducer (LCL-113G, Omega Engineering)
attachedtoabrassrod. The lever position was continuously recorded
using LabJack and Ephus (controlled by MATLAB), whichworked with
custom software running on LabVIEW (National Instruments) that
monitored threshold crossing. Dispatcher software controlled the
behavioural set-up (Z. Mainen and C. Brody, controlled by MATLAB).
Mice used their left paw to grasp alever attached to aforce transducer
while resting their right paw on astationary block. A 6-kHz tone marked
acue period (up to 10 s), during which a successful lever press was
rewarded with water (around 10 pl per trial) paired with a 500-ms,
12-kHz tone, and followed by aninter-trialinterval (ITl, variable duration
of 8-12 s). A successful lever-press movement was defined as crossing
two thresholds (around 1.5 mm and 3 mm below the resting position)
within 200 ms. Failure to press the lever passing the two thresholds
during the cue period triggered aloud white-noise sound and the start
of anITI. Lever presses during ITIs were neither rewarded nor punished.
Each session consisted of 100 trials.

Lever-press movement analysis

Movement analyses were performed as previously described™*. Inbrief,
lever displacement traces (voltage recordings from the force trans-
ducer) were downsampled from 10 kHz to 1 kHz, then filtered using a
four-pole10 Hz low-pass Butterworth filter, after which the velocity of
thelever was determined by smoothing the difference of consecutive
points withamoving average window of 5 ms. The envelope of the lever
velocity was then extracted using a Hilbert transform, and movement
bouts were defined by the envelope crossing a threshold of 4.9 mm
per second. Each movement bout was extended by 75 ms on either
side. Bouts separated by less than 500 ms were considered continuous.
Movement start and end times were defined as the points at which the
lever exceeded or fell below the thresholds defined by rest periods
before and after the movement bouts. Thresholds were defined as the
resting position plus the 99th percentile of the noise distribution, in
turndefined as the difference between the Butterworth smoothed trace
and the original trace. For reaction-time analysis, the trials in which
mice moved the lever within 100 ms before the cue start time were
excluded from analysis. Movement correlations within sessions were
calculated using the median of all pairwise correlations of rewarded
movements that started after cue onset within asingle session. Move-
ment correlations across sessions were found using the median cor-
relations of all possible pairs of movements between sessions.

Invivo two-photonimaging

Imaging was performed using acommercial two-photon microscope
(B-Scope, ThorLabs) equipped with a x16/0.8-NA objective (Nikon) and
aTi-Salaser (Mai Tai) tuned to 925 nm. Image acquisition was controlled
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with Scanlmage software. Images (512 x 512 pixels at X2 zoom for neu-
ronal recording or x5 zoom for axonal recording) were recorded at
around 30 Hz for the duration of the behavioural session. Frame times
wererecorded and synchronized withbehavioural recordings using the
Ephussoftware. For some mice, two FOVs were recorded oninterleaved
days. The FOVs did not overlap.

For axonimaging, weimaged at the most superficial depth that con-
tained many labelled axons. This was almost always within 200 pum of
the pia surface. Somaimaging was typically done at a depth of 200-
300 pm from the pia surface.

Image analysis

ROl identification and fluorescence analysis. Suite2P software*® was
used to generate regions of interest (ROIs) corresponding toindividual
neurons or axonal boutons and extract their fluorescence. ROI clas-
sifications by the automatic classifier were further refined by manual
inspection. Signals from ROIs were deconvolved with a non-negative
deconvolution algorithm to remove fluorescence decay and estimate
underlying spiking activity*. The estimated spikes were used for all
neural activity analyses, besides analysing neuronal activity during
opto-mapping sessions. For opto-mapping analysis, fluorescence time
series were produced by averaging the pixels within each ROI (minus
surrounding neuropil) for allimaging frames. The time-varying baseline
of afluorescence trace (F,) was estimated by smoothing inactive por-
tions of the trace using a previously described iterative procedure’. In
brief, this process identified the trace’s active and inactive portions,
removingactive portions and using the LOESS-smoothed inactive por-
tions (interpolated across active periods) to estimate the time-varying
baseline. The normalized AF/F, trace was then calculated, in which AF
was found by subtracting the baseline trace from the raw trace, and
isthe calculated time-varying baseline.

To match neurons across multiple imaging sessions, we used the
MATLAB code ROIMatchpub (https://github.com/ransona/ROIMatch-
Pub), followed by manual confirmation and corrections after auto-
mated detection.

Classification of movement-modulated neurons. Movement-
modulated neurons were classified as previously described”. In brief,
the dot product of the binarized lever trace (movements versus non-
movements) and estimated spikes was calculated for each ROI. This
value was compared to the dot products when shuffling the movement
periods1,000times. Actual values above the 97.5 percentile of the shuf-
fled distribution were classified asmovement-active, and actual values
below the 2.5 percentile were classified as movement-suppressed. All
other cells were considered indiscriminately active.

Activity onset. To estimate the timing of the activity onset of individual
neurons during rewarded movements, the activity of each neuron
(estimated spikes) was aligned to the onsets of rewarded movements.
We only considered movements that did not have another movement
within 2 s before movement onset to avoid contamination of activity
related to previous movements. The activity of each neuron was aver-
aged across all rewarded movements, and the activity onset time was
defined by the first frame in which activity was higher than the averaged
baseline activity (defined as -2 to —1.5 s before movement onset) by
more than one standard deviation and remained above this criterion
for 90 ms (three successive frames).

Population activity correlation. The stability of the populationacross
trials was assessed by the correlation of population vectors. Each popu-
lation vector includes the concatenated activity of all neurons during
rewarded movement epochs (2-s time window starting at 0.5 s before
the onset of the rewarded movement). The movement-movement
activity Pearson’s correlation was then calculated between all pairs of
all population vectors per FOV.

Correlation-based functional connectivity. Functional connectivity
was inferred using the fast and robust connectome inference (FARCI)
method?. FARCI was designed to infer the functional neuronal con-
nectome from in vivo two-photon Ca imaging. In brief, after steps of
estimated spike thresholding (three standard deviations) and smooth-
ing (three frames), FARCI uses partial correlations between pairs of
neuronsto infer their connectivity. We used the following parameters
for spike thresholding, smoothing and partial correlations: 3,3and 2,
respectively.

Optogenetic mapping

Optogenetic stimulation was performed by delivering 660-nm LED
light (Thorlabs, M660L3), witha full width at half maximum of 10 nm,
through a bandpass filter (660/10 nm, Thorlabs, FB660-10) and was
combined with the two-photon excitation light for imaging with a
750-nm long-pass filter (Chroma T7501pxrxt-UF1). These two lights
were directed to the sample by a primary dichroic mirror reflecting
640-700 nm and 900-1,000 nm (Chroma ZT640rdc-sp-UF2). Each
light-pulse train duration was 1 s at 25 Hz, controlled by Arduino with
10-ms pulses. Each opto-mapping sessionincluded 45 trials (each trial
isonelight-pulse train), separated by around 20 s, at three light intensi-
ties (8 mW, 14 mW and 30 mW from the objective).

For optogenetic mapping sessions with inactivation of the motor
thalamus, muscimolwas injected using glass pipettes unilaterally into
the motor thalamus of CaMKII-tTA::tetO-GCaMPé6s::Vglut2-Cre triple
transgenic mice:1 mm posterior,1 mm lateral to bregma at adepth of
around 3.7 mm from the pia (approximately 0.3 pl of 5 pg pl™in cortex
buffer). Mice were allowed to recover in their home cage on a heating
padfor1hbefore optogenetic mapping sessions. Injected mice showed
obvious turning behaviour, which confirmed successful injections.

Classification of responsive neurons. Activity (AF/F,) 0.5to1s after
the onset of a1-s opto stimulation (LED on) was compared to activity
2to -1s before the onset of the opto stimulation (baseline) across all
15 trials in each light intensity. To classify a neuron as Th-excited or
Th-rebound, it must be classified as such in at least one of the three
light intensities according to the following criteria. For a neuron to
be classified as a Th-excited neuron: first, a P value lower than 0.01
using the Wilcoxon signed-rank test when comparing LED on time to
baseline. Second, an average increase in activity from baseline to LED
onlarger than one (AF/F,).

To classify a neuron as a Th-rebound neuron, the activity from the
termination of the opto stimulation to 0.5 s later (LED off) was com-
pared to the LED on activity. If aneuron had a P value lower than 0.01
using the Wilcoxon signed-rank test, when comparing LED offto LED
on and an average increase in activity from LED on to LED off larger
than one (AF/F,), this neuron was classified as a Th-rebound neuron.
Allneurons not classified as Th-excited or Th-rebound were classified
as Th-non-responsive.

Population decoding analysis

The decoding analysis was performed using linear maximum margin
classifiers (SVM) using the scikit-learn SVC package*® to decode the
time points of rewarded movements from neural data. We used the
primal optimization problem formulation (dual=False) in the SVM
implementation for improved computational efficiency with our
high-dimensional feature space.

Preprocessing and cross-validation. The neural data (estimated
spikes for soma or AF/Ffor axons) was first preprocessed. This preproc-
essing step consisted of binning the datato100-msbins. For decoding,
we used tenfold cross-validation. For a given session, the trials were
randomly assigned to one of the ten folds. To ensure that the neural
data from nearby trials did not contaminate each other, we excluded
ten time bins from the beginning and end of each trial.
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Pseudopopulation generation and decoding analysis. Pseudo-
simultaneous populations of neural activity (‘pseudopopulations’)*
for decoding rewarded movements were created by pooling activity
fromneurons or axonal boutons from all mice. To discriminate between
rewarded movement and non-movement time points, we first preproc-
essed both the neuronal and axonal activity and the behavioural data
and separated them into ten cross-validation folds. Non-rewarded
movement time points were excluded from the data in each fold. We
excluded mice that did not have sufficient time points for both classes
(rewarded and non-movement time points) in each cross-validation
fold to ensure balanced sampling.

For eachremaining mouse, activity from neurons or axonal boutons
was z-scored within each set. Response vectors were assembled by
randomly selecting time bins associated with rewarded movements or
non-movement time points and combining these into asingle n-length
vector for n total units (neurons or axonal boutons) across all pooled
mice. Werandomly sampled 10,000 vectors and combined theminto
asingle pseudopopulation with nunitsand 10,000 samples*. For each
cross-validation fold, we created two such pseudopopulations: one
using datafrom nine folds for training, and another using the held-out
fold for testing.

Finally, a linear support vector classifier was trained to predict the
behavioural label fromthe training population. For comparing decoder
performance across different populations with varying numbers of
units, we randomly subsampled each population from five units up
to the total number of available units to ensure equal numbers before
pseudopopulation generation. This subsampling was repeated 50
times to account for samplingbias. The entire pseudopopulation and
decoding pipeline was repeated five times. The decoding accuracies
we report are averaged across these pseudopopulation repetitions
and sampling repetitions.

ShaReD
ShaReD builds on CCA, which is a statistical method used to identify
and quantify relationships between two sets of variables. In the con-
text of neuroscience, CCA canbe used to uncover linear combinations
of neural activity features that are maximally correlated with linear
combinations of behavioural features. This allows us to investigate
how neural activity patterns relate to specific aspects of behaviour.
CCA operates on two paired datasets, X (neural data) and Y (behav-
ioural data), each containing observations across multiple time points
and dimensions (e.g., neurons or behavioural features). The core objec-
tive of CCAiis to find projection vectors, a for the neural dataand b
for the behavioural data, that maximize the correlation between the
projected data points. Mathematically, this can be expressed as maxi-
mizing the following function:

.
maxp(u, v) = max a Cob

ab  [a7CabCyb

where u=Xa and v=Yb represent the projections of the neural
and behavioural data onto their respective vectors, provided X and
YhaveTbeen mean- centred and contain T time points. Here, Cyy = TX
Cyy= and Cyy= r Y are the neural covariance, neural-behavioural
Cross- covarlance and behavioural covariance matrices, respectively.

The optimization problemis typically solved through an eigenvalue
decomposition of the covariance matrices of the data. This yields a
set of canonical variates (u,,v,), (u,,V,), ..., each representing a pair of
maximally correlated linear combinations of neural and behavioural
features. The strength of the relationship between each pair is quanti-
fied by the corresponding canonical correlation coefficient (p).

By examining the weights within the projection vectorsaand b, we
can gain insights into which specific neurons or behavioural features
contribute most to the shared variance between the two datasets. This

provides valuable information about the neural encoding of behaviour
and can help us understand how neural populations represent and
contribute to specific behavioural patterns.

Although CCA s effective inidentifying relationships between neu-
ral and behavioural data within individuals, comparing results across
multiple individuals can be challenging owing to variations in projec-
tion vectors. ShaReD addresses this limitation by finding a single set
ofbehavioural features that are shared across allindividuals and maxi-
mally correlated with the neural activity of each individual, allowing for
the generalization of findings and identification of common patterns
of neural-behavioural interactions.

ShaReD operates on paired neural and behavioural datasets from
multipleindividuals (X, Y,), (X,,Y,), ..., (X, Y,). Foreachindividual k, the
neural datamatrix X, € R"*" contains T, time points and N, neurons,
whereas the behavioural data matrix ¥, € R®2 contains the same T,
time points and Bbehavioural features. Although the number of time
points T, may vary across individuals, the number of behavioural fea-
tures Bremains constant. The objective is to find a single projection
vector b € R? for the behavioural data and unique neural projection
vectors a,, a,, ..., a, for each individual, where a, € R". These vectors
should be optimized to maximize the sum of squared correlation coef-
ficients across all individuals, which can be achieved using a simple
objective function, assuming that the neural and behavioural data have
been mean-centred and that the behavioural data have been whitened
(see‘Preprocessing’ subsection). The complete objective function we
minimize is given by

Ck
min £ = —Z w, (2] C,b)? + Z aa;Cla, —1)+ﬂ[bT2kKWb—1j
A

()
+/lreg Z |b | +/lsmooth Z Z (bg _%71)2'
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where C&, = X{ X,/ Ti, C&, =X Y, /T, and CX = Y'Y, /T, are the normal-
ized covariance matrices for each individual kwith T, time points. The
average behavioural covariance matrix across individuals is defined
as Cyy = % Zk C,f‘y. In this objective function, w, represents a weight-
ing factor for each individual, allowing for differential weighting of
datasets on the basis of their importance or size. In our analyses, w,
was scaled by the fraction of neurons in each dataset out of the total
number of neurons across all datasets. This ensured that datasets with
alarger number of neurons contributed more to the overall objective
function. The Lagrange multipliers a,and Sare introduced to enforce
constraints on the norms of the projection vectors, ensuring that
the projected neural datafor eachindividual (a;Cf,a, ) and the projec-
ted behavioural data (bTTyyb) have unit variance.

The objective functionalsoincludesregularization termsto ensure
awell-behaved solutionandtoincorporate prior knowledge about the
structure of the data. Specifically, the L1 penalty (controlled by 4,,) on
thebehavioural projection vector b promotes sparsity and helpsiden-
tify the most relevant and informative behavioural features that con-
tribute most to the shared neural-behavioural correlations across
individuals. Here, b, corresponds to the ith element of b. In addition,
asmoothing penalty (controlled by Aq,,0.) is applied to groups of indi-
cesthatrepresent a discretized continuous variable, where gindexes
the behavioural variable type (g =1for position, g =2 for speed) and
b;‘-’denotes the projection weight for thejth lag of behavioural variable
g. By enforcing smooth transitions between consecutive weights
separately for position and speed features, we impose a smoothness
constraint akinto temporal continuity. This incorporates prior knowl-
edge about the temporal structure of behaviour and helps prevent
overfitting to noise or idiosyncrasies in the data. For our analyses, A,
and A0 Were kept at values of 0.02 and 0.04, respectively.

We minimize the objective function in two steps. The first stage
focusesonthe core part of the objective function and involves solving
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for the minimizer of the first three terms using an eigenvalue decom-
position.

Step 1: initial optimization. To find the initial estimate for the
first ShaReD component, we set b equal to the normalized eigen-
vector corresponding to the largest eigenvalue of the matrix
Y 0 (T ich(ckyick,. This eigenvector represents the initial
estimate for the shared behavioural projection across all individuals.
Then, for each individual k we compute the neural projection vector a,
asfollows:

(G 'Civb

Q=
Jo'ckckyckb

This step provides individual-specific neural projection vectors that
maximize the correlation with the shared behavioural projection, serv-
ing as astarting point for further refinement. To ensure the constraints
are satisfied we compute a, and § as the following:

a, = wy(ajCk b)?
B =Y w(a;Chb)
X

Step 2: Gradient descent. Owing to the inclusion of the L1and smooth-
ness penalties, we cannot obtain a closed-form solution for the mini-
mizer of the entire objective function. Thus, theinitial solutionis refined
using gradient descent toincorporate the L1and smoothing penalties
and achieve a more stable and generalizable solution. This involves
iteratively updating the a,and b vectors based on the gradients of the
objective function withrespect to each element. The gradient updates
for eachindividual’s neural projection vector a,can be calculated as:

oL

30~ 20d@Cb)(Chyb) + 20, Cixay.
k

Similarly, the gradient update for the shared behavioural projection
vectorbis:

oL

a5 = 2 2 @)@ Ch) + 286" CpyY
k

+/1regsign(b) + z ngmooth’
g

where V&, ., corresponds to the following expression, taking edge

effectsinto account:

Z/lsmooth(big - bg) forj=1,
2Amootn(2bF —b% -b%,) for2<j<n,-1,
2Asmooth(bﬁg_ bggfl)

Vg

smooth —

forj=n,.

Here, n,represents the number of temporal lags for each behavioural

variable (for example, position or speed), and bf corresponds to the

Jjthelement of behavioural variable g. The smoothing penalty encour-
ages temporal continuity by promoting similar weights for adjacent
time lags within each behavioural variable while maintainingindepend-
ence between different variables.

This iterative gradient descent process refines both the individual-
specific neural projections and the shared behavioural projection to
maximize the sum of squared correlations while incorporating the
desired regularization properties. At each iteration of the gradient
descent we recompute a,and S to ensure the constraints are satis-
fied, and orthogonalize the current weights with respect to previously

found components to ensure we discover independent behavioural
components.

Deflation. After identifying the first ShaReD component, which con-
sists of the shared behavioural projection vector b and the individual
neural projection vectors a,, we apply deflation to remove the explained
(co)variance from the data. This allows for the discovery of subsequent
ShaReD components that capture additional,independent patterns of
neural-behavioural correlations.

Deflation essentially removes the contribution of the identified
ShaReD component from the data, forcing the subsequent optimiza-
tionstepsto focus on remaining sources of shared (co)variance. This is
achieved by projecting the data onto alower-dimensional subspace that
isorthogonal to the space spanned by the first ShaReD component. The
deflated data are then used to repeat the optimization process (steps
1and 2) to find the next ShaReD component. This iterative process
continues until a desired number of components are found or until
the remaining variance of the data is negligible.

Preprocessing. Before applying ShaReD, we z-scored the data, and
used singular value decomposition (SVD) to whiten the neural as well
asthe behavioural datasets. Given amatrix Y,, we expressed its SVD as
USV™. Towhiten the data, we removed the S matrix and calculated UV".
This ensures that the covariance matrix is the identity matrix, which
standardizes the variance across all dimensions without altering the
original orientation of the data. This step ensures that all variables
contribute to the analysis equally.

Projected behaviour visualization. To analyse how different move-
ment patterns relate to the behavioural components identified by
ShaReD, we first downsampled the raw lever position data from
1,000 Hz to 100 Hz by averaging within non-overlapping 10-ms win-
dows. For each mouse, we defined the learned movement pattern by
randomly selecting half of the rewarded movements and averaging
their position trajectories. This sampling and averaging procedure was
repeated ten times to mitigate sampling bias inidentifying the learned
pattern. For the remaining movements not used to define the learned
pattern, we quantified their similarity to the learned movement by
calculating the correlation between their lever position traces from
movement onset to1s after onset.

We calculated lever speed from the downsampled position data by
taking the absolute difference between averages of adjacent 100-ms
bins (ten samples at 100 Hz). For both lever position and lever speed,
we created delay matricesin which each row represented a2.1-ssliding
window (210 samples at 100 Hz), averaged into 21 non-overlapping
bins of 10 samples each. These 21 bins correspond to the temporal
structure of the ShaReD behavioural components (ten past lags, one
present and ten future lags for each behavioural variable). The final
behavioural projection was computed by applying the correspond-
ing ShaReD weights (21 weights each for position and speed) to these
binned averages, with the window sliding forward one sample (10 ms)
atatime.

To visualize how different movements project onto the behavioural
components, we pooled trials across all mice and grouped themon the
basis of their similarity to the learned pattern. Trials were divided into
high-similarity (correlation > 0.7) and low-similarity (correlation <0.4)
groups, with these thresholds chosen to ensure approximately equal
numbers of trialsin each group. Owing to the 2.1-s window required for
the 21ShaReD time bins (ten past lags, one present and ten future lags
at10 Hz), projecting our original movement data (-1.5sto 2.5 saround
movement onset) yielded projection values spanning from -0.45s to
1.45 s relative to movement onset. For both high- and low-similarity
groups, we calculated projections onto the behavioural components
of both Th-excited and Th-non-responsive populations. The shaded
regions around each trajectory represent the standard deviationacross



ten iterations of randomly selecting different sets of movements to
define the learned pattern.

Chemogeneticinactivation

For inactivating the motor thalamus, CNO (Enzo Life Sciences) was
dissolved insterile saline toa concentration of 2.5 mg ml™ and injected
i.p. ata10 mg per kg body weight dose 45 min before the behavioural
session.

For locally inactivating motor thalamic inputs in M1, CNO (1 mM)
wasinjected into threelocationsin M1 (100 nl perlocation) at 0.5 mm
below the pia surface 15 min before behavioural training.

Only mice that had hM4Di expression in the motor thalamus (VM and
VAL) confirmed by histology were included in the analysis. Investiga-
tors wereblinded to the identity of the mouse (hM4Di versus control)
during behavioural training and to the performance of the mouse when
examining hM4Di expression.

Histology

Mice were anaesthetized and transcardially perfused with ice-cold
0.1 M phosphate-buffered saline (PBS) (pH 7.4), followed by perfusion
with ice-cold 4% paraformaldehyde (PFA) solution. Isolated brains
were post-fixed overnight at4 °Cin 4% PFA and cryoprotected in 30%
sucrosesolution foratleast48 hat4 °C. Microtome-cut (Thermo Scien-
tificMicrom HM 430) 40-50-pm free-floating brain (coronal) sections
were collected in PBS and stored at 4 °C. Slices were mounted with a
CC mounting medium (Sigma-Aldrich) and imaged using a fluores-
cence microscope (Zenand ApoTome.2, Zeiss). For visualizing axonal
GCaMPé6s and hM4di, coronal sections were blocked ina solution con-
sisting of 10% donkey serum, 1% BSA and 0.3% Triton X-100 in 1x PBS
for1hatroomtemperature, followed by overnightincubation at 4 °C
with primary antibodies (1:1,000 chicken anti-GFP, Aves Labs (GCaMP);
1:1,000 rabbit anti-mCherry, Abcam (hM4Di)) diluted in the blocking
solution. After washing, sections were incubated in secondary antibod-
ies (1:200 goat anti-chicken Alexa Fluor 488, Jackson ImmunoResearch
(GcAMP); 1:200 goat anti-rabbit, Alexa Fluor 594, Thermo Fisher Sci-
entific (hM4Di)) for 1.5 h at room temperature. For all experiments,
we verified the expression of the injection construct (axon-GCaMPé6s,
ChrimsonR or hM4di) in the desired brain region.

Identifying monosynaptic inputs to M1L2/3 neurons

We analysed data from a previous study'®, representing rabies-virus-
based monosynaptic retrograde labelling of direct inputs to M1L2/3
excitatory neurons. We examined only data using Cux2-Cre and Sepwl-
Crelines, which represent putative excitatory M1L2/3 neurons.

Statistics

For comparing decoding analyses, we used ¢-tests, with Holm-Bonfer-
roni multiple-comparison correction where appropriate. Otherwise,
non-parametric tests were used to avoid assumptions about data

distributions. No statistical methods were used to predetermine sam-
plesize, but our sample sizes are similar to those reported in previous
publications™.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.
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Extended DataFig.1|Further analysis for rewarded movements. a, Left, the
median duration of all rewarded movements across individual sessions. Right,
median variability (s.d.) inrewarded movement duration across individual
sessions.n =36 for both beginner and expertsessions. b, Representative
examples of rewarded movements. Individual (blue) and the average rewarded
movements (black) during beginner (left) and expert (right) sessions.
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Extended DataFig.2|Motorlearninginducesreproducible patterns

of M1L2/3 activity. a, Top, max-intensity projection of in vivo two-photon
fluorescenceimages of GCaMP6sin M1L2/3 of CaMKII-tTA::tetO-GCaMPés::
Vglut2-Cre triple transgenic mice, expressing GCaMPé6s in cortical excitatory
neurons. Thesame FOVimaged onthe first (beginner) and last (expert) training
days. Bottom, representative estimated spike traces from the same neurons.
b, Activity from one example FOV. Top, population average of all (black),
movement-active (blue),and movement-suppressed (green) neurons. Middle,
representative individual neurons. Bottom, lever position. Pink highlights
represent movement periods. ¢, Trial-averaged activity of movement-active
(top, sorted by onset timing), movement-suppressed (middle), and
indiscriminately active (bottom) neurons during beginner (left) and expert
(right) sessions, aligned to the onset of rewarded movements (dashed lines).
Eachrowrepresentsone neuron. During beginner sessions, 30.7% of the
neurons are movement-active (1132 neurons), 14.2% are movementsuppressed
(525 neurons), and 55.1% are indiscriminately active (2036 neurons). During
expertsessions,35.1% of the neurons are movement-active (1035 neurons),
17.1% are movement-suppressed (504 neurons), and 47.8% are indiscriminately
active (1407 neurons). d, Average population activity during beginner (left) and
expert (right) sessions. Mean £ s.e.m. e, Trial-by-trial correlation of population
activity patterns during rewarded movementsincreased over training (p < 0.01,
rank-sumtest). Box plot elements: centre line, median; box limits, upper and
lower quartiles; whiskers, 1.5x interquartile range; points, outliers. Forb,c,d,g-i,
n=7mice;14 beginner sessions, 13 expert sessions. Allrank-sum tests are
two-sided.
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SSs,secondary somatosensory cortex; VAL, ventral anterior-lateral complex
ofthe thalamus; VM, ventral medial nucleus of the thalamus; VPL, ventral
posterolateral nucleus of the thalamus; VPM, ventral posteromedial nucleus
ofthe thalamus; PO, posterior complex of the thalamus.
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than Th-non-responsive neurons with movement-active neurons (p < 0.001,
signed-rank test). Connection probabilities with movementsuppressed neurons
aresimilar between Th-excited and Th-non-responsive neurons (p = 0.1260).
Right, inexperts, Th-excited neurons have a higher connection probability with
movement-active neurons and alower connection probability with movement-
suppressed neurons than Th-non-responsive neurons (p <0.001and 0.05,
signed-rank test). All tests are two-sided.
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Extended DataFig.10|S1-excited, cM1-excited and M2-excited M1L2/3
neurons do not preferentially encode thelearned movement. a, Top,
experimental strategy. ChrimsonRis expressedin S1,cM1, and M2 neurons, and
imaging and optogenetic stimulation are performed in M1. Bottom, coronal
sections showing the expression of ChrimsonR-tdTomato neurons (red) and
GCaMPésin cortical neurons (green). b, Fractions of excited, rebound, and
non-responsive neurons by stimulation of the 4 inputs during the opto-mapping
session O (motor thalamus, n =1494 neurons from 7 mice; S1, n = 754 neurons
from Smice; cM1,n=1288 neurons from 5 mice; M2, n=1792 neurons from

4 mice).c, Left, the trial-average activity of all S1-excited and S1-non-responsive

(n=856neurons from 5 mice) neurons from beginner sessions aligned to
rewarded movement onset (dashedline). Mean +s.e.m. Middle, fractions of
movement-active, movement-suppressed, and indiscriminately active neurons
within the Sl-excited populationinbeginners. Right, same as the left panel but
formovement-active neurons. d, Same as cbut for experts (n =760 neurons
from5mice). e, Same as cbut for cM1-excited neurons (n =1572 neurons from
Smice). f,Same asd but for cM1-excited neurons (n =1203 neurons from 5 mice).
g,Same as cbut for M2-excited neurons (n =331neurons from one mouse).

h, Same asdbut for M2-excited neurons (n =493 neurons from one mouse).
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Extended DataFig.11|Further analysisrelated to ShaReD. a, Weights (with
unitL2-norm) for the second ShaReD behavioural component for movement-
active Th-excited neurons (blue) or movement-active Th-non-responsive
neurons (pink). Shaded areas show 95% confidence intervals of the mean

over cross-validation folds. For Th-non-responsive neurons, the weights are
computed 50 times for different samplings of neurons to match the number
of Th-excited neurons and averaged over samples. b, Cross-validated measure
ofthe root mean square correlation (between projected behaviour and
projected neural activity) for the first 8 ShaReD components for movement-
active Th-excited neurons (blue) and movement-active Th-non-responsive

neurons (pink). Mean with 95% confidence intervals over cross-validation folds.
¢, Cross-validated decoding accuracy for the first behavioural component
formovement-active Th-excited neurons when the behavioural projection
weights are time-shifted. The decoding accuracy is the highest around zero
time-shift (lag), i.e., when neural activity precedes movements asin Fig. 3b.
Shaded areas show 95% confidence intervals of the mean over cross-validation
folds.d, Convergence of the ShaReD objective functionacross 1,000 gradient
descentiterations, shown for both first (solid lines) and second (dotted lines)
components of Th-excited (blue) and Th-non-responsive (pink) neurons. Shaded
areas show 95% confidence intervals of the mean over cross-validation folds.
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(ShaReD) was done using Python.
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Sample size No statistical methods were used to pre-determine sample sizes; however, our sample sizes are comparable to those reported in previous
studies

Data exclusions  We excluded mice that did not significantly improve their performance over learning. For the chemogenetic inactivation experiment, animals
with minimal hM4Di expression within the thalamus or high expression outside the thalamus were excluded (see Blinding).

Replication Experiments and simulations were replicated as follows:
- For the experiments described in Figures 3,4,5 and 6 - 10 distinct recordings per learning stage were used (7 mice, 1 or 2 fields of view per
mouse).
- For the experiment described in Figure 2 - Multiple distinct recordings per learning stage were used (taken from 7, 4, 7 and 7 mice for
thalamic, S1, cM1 and M2 inputs, respectively).
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Randomization  Animals used in this study were not selected based on prerequisite features other than general animal well-being for allocation into a

Blinding For the chemogenetic inactivation experiment, Investigators were blinded to the animal's performance when training and examining hM4Di
expression.

Reporting for specific materials, systems and methods
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Antibodies used Chicken anti-GFP, Aves Labs; Goat anti-chicken 488, Jackson ImmunoResearch; Rabbit anti-mCherry, Abcam; Goat anti-Rabbit, Alexa
Fluor 594, Thermo Fisher Scientific.

Validation Chicken anti-GFP, Aves Labs validated in immunofluorescence here - https://www.aveslabs.com/products/anti-green-fluorescent-
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
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Laboratory animals Mice - C57BL/6 (Carles River), Vglut2-Cre (Vglut2-ires-cre, JAX stock #016963), CaMKII-tTA (B6;CBA-Tg(Camk2a-tTA)IMmay/J, JAX
stock #003010), and tetO-GCaMP6s (B6;DBA-Tg(tetO-GCaMP6s)2Niell/), JAX stock #024742)

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Both males and females were used in the study.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight All animal procedures were performed in accordance with guidelines and protocols approved by the UCSD Institutional Animal Care
and Use Committee and the National Institutes of Health (NIH).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Novel plant genotypes
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Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
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assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
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