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Motor learning refines thalamic influence on 
motor cortex

Assaf Ramot1,2,3,4,7, Felix H. Taschbach1,5,7, Yun C. Yang1,2,3,4, Yuxin Hu1,2,3,4, Qiyu Chen1,2,3,4, 
Bobbie C. Morales1,2,3,4, Xinyi C. Wang1,2,3,4, An Wu1,2,3,4,8, Kay M. Tye5,6, Marcus K. Benna1 ✉ & 
Takaki Komiyama1,2,3,4,6 ✉

The primary motor cortex (M1) is central for the learning and execution of dexterous 
motor skills1–3, and its superficial layer (layers 2 and 3; hereafter, L2/3) is a key locus of 
learning-related plasticity1,4–6. It remains unknown how motor learning shapes the way 
in which upstream regions activate M1 circuits to execute learned movements. Here, 
using longitudinal axonal imaging of the main inputs to M1 L2/3 in mice, we show that 
the motor thalamus is the key input source that encodes learned movements in experts 
(animals trained for two weeks). We then use optogenetics to identify the subset of M1 
L2/3 neurons that are strongly driven by thalamic inputs before and after learning.  
We find that the thalamic influence on M1 changes with learning, such that the motor 
thalamus preferentially activates the M1 neurons that encode learned movements  
in experts. Inactivation of the thalamic inputs to M1 in experts impairs learned 
movements. Our study shows that motor learning reshapes the thalamic influence  
on M1 to enable the reliable execution of learned movements.

Reliable execution of learned movements is a fundamental aspect 
of adaptive behaviour, and is essential for an animal’s survival and 
well-being. During repeated practice of a motor skill, the variability of 
movements across trials decreases and the speed at which a desired 
outcome is achieved increases, in a process known as motor learning. 
During this process, the motor circuits in the brain undergo changes that 
facilitate the reliable and efficient execution of the learned motor skill7,8.

The primary motor cortex (M1) is a central locus for motor learning 
and execution in the mammalian brain1–3. Even though not all move-
ments require M1 (ref. 9), and some M1-dependent motor skills can 
become independent of M1 after long-term training10,11, M1 is clearly 
essential for the initial learning of many dexterous motor skills. In par-
ticular, the superficial layer L2/3 of M1 is a major locus of changes during 
motor learning. Synapses onto M1 L2/3 excitatory neurons reorganize 
during motor learning1,4–6, and this coincides with the emergence of 
reproducible spatio-temporal activity in the M1 L2/3 neural population 
that accompanies learned movements1. M1 L2/3 neurons drive deeper 
layers of M1 that house neurons projecting subcortically and serve as 
the output layer of M1 (ref. 12). A model has emerged in which M1 L2/3 
receives long-range inputs that interact with local recurrent circuits 
to generate the skill-specific ensemble activity that dynamically drives 
deeper-layer neurons to execute the learned motor skill. However, 
several key questions remain, including the identity of the brain area 
that provides the key input to drive the skill-specific M1 L2/3 activity, the 
specific M1 L2/3 neurons it activates, and the way this input pathway 
is shaped during motor learning. Cellular-level interactions across 
brain areas are poorly understood, owing partially to the technical dif-
ficulties of identifying effective connectivity across areas—especially 
longitudinally throughout learning.

Here, we investigate the main sources of long-range inputs to M1 
L2/3. Using longitudinal axonal calcium imaging, we identify the motor 
thalamus as the input area that provides the strongest excitation to M1 
before and during a learned movement. We then establish a methodol-
ogy to identify the sparse group of M1 L2/3 neurons that are strongly 
driven by thalamic inputs, and characterize their functional properties 
during behaviour. We develop a computational method for aligning 
paired high-dimensional multimodal data across individuals, and use it 
to uncover the unique encoding properties of the thalamus-excited M1 
L2/3 neurons. A longitudinal analysis reveals that learning refines the 
thalamic influence on M1, such that thalamic inputs strongly activate 
movement-preceding neurons in experts. We propose that the precise 
reorganization of the thalamocortical pathway is a crucial component 
of motor learning.

Motor learning and M1 activity
To investigate M1 circuits that are associated with learned movements, 
we used a cued lever-press task1. In this task, water-restricted mice were 
trained under head fixation daily for one session per day for two weeks. 
During training sessions, mice used their left forepaw to grasp a lever. 
An auditory cue signalled the answer period during which a lever press 
past the threshold produced a water reward (Fig. 1a). In a comparison 
of the expert stage (days 13–14) and the beginner stage (days 1–2), we 
found that the number of rewarded trials increased (Fig. 1b) in the 
expert stage, and the times from cue to movement onset and from  
cue to reward decreased (Fig. 1c). Movement trajectories became 
more stereotyped in the expert stage (Fig. 1d and Extended Data Fig. 1),  
a hallmark of motor learning.
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We next examined the ensemble activity of L2/3 neurons in the caudal 
forelimb area of the right M1 by performing longitudinal two-photon 
calcium imaging of the same population of neurons across training 
(n = 10 imaging fields from 7 mice) (Extended Data Fig. 2a). A substantial 
proportion of neurons exhibited movement-related activity, catego-
rized as either ‘movement-active’ or ‘movement-suppressed’ (Extended 
Data Fig. 2b–d), with their activity tiling the duration of rewarded move-
ments (Extended Data Fig. 1). The trial-by-trial correlation of popula-
tion activity patterns during rewarded movements increased during 
learning, indicating the emergence of a reproducible activity pattern 
(Extended Data Fig. 2e).

Thalamic inputs encode learned movements
Previous studies showed that M1 activity is essential for executing 
learned movements after two weeks of training1,10,11. M1 receives inputs 
from various brain regions13–15. We hypothesized that specific inputs ini-
tiate the dynamics of M1 L2/3 to drive the learned movement. To test this 
idea, we started by identifying the primary sources of long-range inputs 
to M1 L2/3 neurons. We used a published dataset from an experiment 
in which rabies-virus-based monosynaptic retrograde labelling was 
performed with M1 L2/3 excitatory neurons as starter cells16. We identi-
fied the ipsilateral motor thalamus (ventral anterior-lateral complex of 
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Fig. 1 | Thalamic inputs to M1 preferentially encode learned movements in 
experts. a, Schematic of the experimental set-up and task structure. Adapted 
from ref. 4. b, The number of rewarded trials increased over training (P < 0.001, 
Wilcoxon rank-sum test). Circles correspond to individual sessions. c, The time 
from cue onset to movement onset and from cue onset to reward decreased 
over training (P < 0.001, rank-sum test). d, Left, median trial-by-trial correlation 
coefficients of rewarded movement trajectories, averaged across mice. 
Rewarded movements became more similar within (middle) and across (right) 
sessions (P < 0.01 and P < 0.05, rank-sum test, respectively). e, Top, schematic 
of injections to express axon-GCaMP6s in different input areas and image their 
axons innervating M1. Bottom, trial-averaged activity of movement-active  
(top, sorted by onset timing, white), movement-suppressed (middle) and 
indiscriminately active (bottom) axonal boutons in thalamic (n = 7 mice), S1 
(n = 4 mice), cM1 (n = 7 mice) and M2 (n = 7 mice) inputs to M1 during beginner 
(left) and expert (right) sessions, aligned to the onset of rewarded movements 
(dashed lines). Each row represents one axonal bouton. f, The fractions of  
motor thalamus, S1, cM1 and M2 axonal boutons that are movement-active, 
movement-suppressed and indiscriminately active. n for movement-active, 

movement-suppressed and indiscriminately active axonal boutons (beginner/
expert), respectively: thalamus: 1,133/1,441, 356/644 and 687/755; S1: 432/238, 
297/86 and 532/252; cM1: 638/454, 180/201 and 776/639; and M2: 166/219, 72/272 
and 412/525. In experts, motor thalamic inputs exhibited the highest fraction of 
movement-active boutons (χ² = 288.736, degrees of freedom = 3, P < 0.001). Post-
hoc pairwise z-tests with false-discovery-rate correction confirmed significant 
differences between motor thalamic inputs and all other groups (P < 0.001 for 
each comparison). g, Population-average activity of movement-active inputs 
during the beginner (left) and expert (right) sessions, aligned to the onset of 
rewarded movements (peak-normalized). In experts, the population-average 
activity onset of only thalamic inputs preceded movements. h, Cross-validated 
decoding accuracy for distinguishing time points for rewarded movements 
versus no movements. The activity across multiple mice was combined as pseudo-
simultaneous populations (Methods). The decoding accuracy for thalamic 
inputs in experts was significantly higher than that for all other inputs (pairwise 
t-tests with Holm–Bonferroni multiple-comparison correction, all corrected 
P < 10−7). Shaded areas show 95% confidence intervals of the mean over cross-
validation folds. For panels b–d, f and h, *P < 0.05, **P < 0.01 and ***P < 0.001.
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the thalamus (VAL) and ventral medial nucleus of the thalamus (VM)) 
and surrounding thalamic nuclei (ventral posterolateral nucleus of the 
thalamus (VPL), ventral posteromedial nucleus of the thalamus (VPM) 
and posterior complex of the thalamus (PO)), the ipsilateral somatosen-
sory cortex (S1), the contralateral M1 (cM1) and the ipsilateral second-
ary motor cortex (M2) as the four main input areas that accounted for 
around 88% of the long-range inputs to M1 L2/3 (Extended Data Fig. 3). 
Next we examined the activity of these long-range inputs to the right 
M1 during motor learning. To do this, we expressed the axon-targeted 
calcium sensor axon-GCaMP6s17 in one of the input areas in each mouse, 
and imaged the activity of their axons in M1 during training (Fig. 1e). By 
analysing fluorescence from individual axonal boutons, we found that 
all four inputs carry substantial movement-related activity throughout 
learning (Fig. 1f and Extended Data Fig. 4), but thalamic inputs exhibited 
the highest proportion of movement-active axonal boutons (Fig. 1f). 
Especially in expert sessions, the movement-active thalamic inputs 
started before the onset of the learned movement, whereas the other 
inputs were relatively delayed, indicating that thalamic inputs could 
contribute to the initiation of the learned movement (Fig. 1g, right). 
Next, to quantify the amount of movement-related activity in each 
input, we used their activity to discriminate the time points of rewarded 
movements versus time points without movement, using linear SVM 
classifiers. Consistent with the other analysis above, thalamic inputs 
at the expert sessions outperformed the other inputs’ decoding of 
rewarded movements (Fig. 1h). Thus, after training, learned movements 
are preferentially encoded by thalamic inputs to M1. Together, these 
results suggest that thalamic inputs have a key role in exciting M1 L2/3 
to drive learned movements.

Identifying thalamus-excited M1 neurons
On the basis of these observations, we hypothesized that thalamocor-
tical inputs activate a specific subset of M1 L2/3 neurons to drive the 
dynamics of the M1 L2/3 population underlying the execution of the 
learned movement. To test this idea, we sought to identify the M1 L2/3 
neurons strongly driven by thalamic inputs, using optogenetic stimula-
tion of thalamic axons in M1. To this end, we first validated our ability 
to reliably excite thalamic axons in M1. We injected Cre-dependent 
AAV encoding ChrimsonR18 and GCaMP6f19 into the motor thala-
mus of Vglut2-Cre mice20, and imaged thalamocortical axons in M1 
(Extended Data Fig. 5a). These axons showed strong and reliable activity 
in response to optogenetic stimulation (Extended Data Fig. 5b). After 
this validation, we combined optogenetic stimulation of thalamic axons 
with two-photon calcium imaging of M1 L2/3 neurons by expressing 
ChrimsonR in the motor thalamus of CaMKII-tTA::tetO-GCaMP6s::V
glut2-Cre triple transgenic mice, in which GCaMP6s is expressed in 
cortical excitatory neurons (Fig. 2a–c). These optogenetic mapping 
(opto-mapping) sessions were done before (session 0) and after (session 
15) the two-week training (Fig. 2a). During the opto-mapping sessions, 
we stimulated thalamic axons in M1 while we imaged the activity of M1 
L2/3 neurons. This approach allowed us to identify the M1 L2/3 neurons 
that respond to the stimulation of thalamic inputs (Fig. 2d and Extended 
Data Fig. 6). A subset (around 9%) of M1 L2/3 neurons showed signifi-
cantly increased activity during thalamic stimulation (‘Th-excited’; we 
note that they might not all be monosynaptically driven by thalamic 
inputs). A fraction of neurons showed increased activity after the offset 
of thalamic stimulation (‘Th-rebound’), but these neurons were very 
rare (around 1%) and we did not study them further (Fig. 2e). We refer 
to all other neurons in the field of view (FOV) as ‘Th-non-responsive’.

We next considered the possibility that stimulation of thalamic 
inputs leads to the activation of Th-excited neurons through indirect 
stimulation of other brain areas (that is, stimulation of axons in M1 
activates thalamic neurons through backpropagation of action poten-
tials, which in turn activate other brain areas, which then indirectly 
excite M1 neurons). To address this issue, we inactivated the motor 

thalamus by local administration of the GABAA agonist muscimol and 
stimulated thalamic axons in M1 while imaging the activity of M1 L2/3 
neurons (Extended Data Fig. 7a). The number of excited neurons was 
similar before and after the injection of muscimol into the motor thala-
mus (Extended Data Fig. 7b,c). Even though the thalamic injection of 
muscimol might not eliminate all collateral activations, these results 
support the notion that Th-excited neurons in M1 are excited owing to 
the local effects of thalamic axons in M1.

Although the overall fraction of Th-excited neurons was similar in 
sessions 0 and 15 (Fig. 2e), the identity of Th-excited neurons changed 
substantially. A subset remained consistently Th-excited before and 
after learning (‘stable’ Th-excited; around half), but others either gained 
(‘gain’ Th-excited neurons) or lost (‘loss’ Th-excited neurons) this prop-
erty over the course of training (Fig. 2f).

Th-excited neurons encode learned movements
Equipped with the identity of M1 L2/3 neurons that are strongly driven 
by thalamocortical inputs, we asked whether their activity patterns dur-
ing training are distinct from those of Th-non-responsive neurons. We 
defined Th-excited neurons in beginner and expert stages separately 
(session 0 for beginner mice and session 15 for expert mice; Fig. 2a). 
We examined whether Th-excited and Th-non-responsive popula-
tions differ in their overall movement-related information using the 
same decoding analysis as in Fig. 1. In beginners, Th-excited neurons 
slightly outperformed Th-non-responsive neurons when the number 
of neurons was matched. Furthermore, Th-excited neurons showed 
a strong increase in their movement encoding during learning, and 
Th-excited neurons in expert mice contained substantially more 
movement-related information than did the Th-non-responsive popula-
tion (Fig. 2g). This strong encoding of rewarded movements in expert 
Th-excited neurons aligns with our similar observation in the activity 
of thalamic inputs (Fig. 1h).

We proceeded to evaluate the movement-related activity in Th-excited 
and Th-non-responsive populations, and found that Th-excited 
neurons exhibited higher activity than Th-non-responsive neurons 
near the initiation of rewarded movements, especially in experts 
(Fig. 2h,i and Extended Data Fig. 8). This higher movement-related 
activity of Th-excited neurons is due partially to the higher fraction 
of movement-excited neurons in the Th-excited population (Fig. 2j). 
The fraction of movement-excited neurons in the Th-excited popu-
lation increased during learning, and in expert mice, a majority of 
Th-excited neurons showed movement-active responses (Fig. 2j,  
bottom).

The strong encoding of rewarded movements by Th-excited neurons 
was not only due to the larger fraction of movement-active neurons. 
A decoding analysis using only movement-active neurons found that 
Th-excited movement-active neurons in experts are more strongly 
modulated by rewarded movements than are Th-non-responsive 
movement-active neurons. This contrasts with similar decoding 
accuracies between movement-active neurons in Th-excited versus 
Th-non-responsive populations in beginners (Fig. 2k). Consistent 
with these observations, movement-aligned population-average 
activity showed stronger movement modulation of Th-excited 
movement-active neurons in experts (Fig. 2m). This difference was 
not observed in beginners (Fig. 2l). Th-excited movement-active neu-
rons were active in a larger fraction of rewarded movements (higher 
‘reliability’) than Th-non-responsive movement-active neurons, dur-
ing expert sessions only (Fig. 2n, bottom). These results suggest that 
in experts, Th-excited neurons exhibit stronger movement-related 
modulation than Th-non-responsive neurons. However, we acknowl-
edge that strictly separating the effects of prevalence and individual 
response strength is difficult in the presence of noise.

In addition, the timing of activity onset relative to the onset of 
rewarded movements showed learning-related changes. In beginners, 
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the activity onset of Th-excited movement-active neurons was not ear-
lier than that of Th-non-responsive movement-active neurons (Fig. 2o, 
top), but it shifted earlier in experts, such that a majority of Th-excited 
movement-active neurons in experts started their activity before or 
around movement onset (Fig. 2o, bottom).

To summarize these results, over learning, Th-excited neurons 
become more strongly engaged during rewarded movements and 
shift their activity timing earlier relative to movement onset. Together 
with the similar observations in the activity of thalamic inputs (Fig. 1), 

these results support the notion that, with learning, the thalamocorti-
cal pathway becomes the key driver of M1 L2/3 activity underlying the 
learned movement. Specifically, we propose that the thalamic inputs 
drive a subset of movement-active neurons in M1 L2/3, which will then 
propagate the activity to other movement-active neurons in M1 through 
local connectivity.

Therefore, we hypothesized that Th-excited neurons have dense 
and specific connections to nearby neurons. However, we do not have 
a direct readout of synaptic connectivity of imaged neurons. Instead, 
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we inferred their functional connectivity using a correlation-based 
connectome inference method (FARCI)21. We found that Th-excited 
neurons had an overall higher connection probability to other neurons 
at both the beginner and the expert stages (Fig. 2p,q and Extended 
Data Fig. 9). This higher connection probability of Th-excited neu-
rons was specifically to movement-active neurons. By contrast, the 
connection probability to movement-suppressed neurons was not 
different between Th-excited neurons and Th-non-responsive neu-
rons in beginners. In expert sessions, the connection probability to 
movement-suppressed neurons was significantly lower for Th-excited 
neurons than for Th-non-responsive neurons. Thus, Th-excited neu-
rons are specifically connected to movement-active neurons. In sum-
mary, the functional connectivity patterns of Th-excited neurons 
support their role in selectively relaying thalamic input activity to the 
movement-active population in M1 L2/3.

We next addressed the question of whether thalamic inputs in experts 
selectively activate Th-excited neurons, or whether Th-excited neurons 
are generally more excitable, such that any stimulation tends to acti-
vate them. To distinguish between these possibilities, we performed 
analogous stimulation experiments for the other inputs (S1, cM1 and 
M2; Extended Data Fig. 10a).

Stimulation of inputs from S1, cM1 and M2 activated substantially 
fewer neurons in M1 L2/3 than did thalamic input stimulation (Extended 
Data Fig. 10b). Furthermore, the few S1-, cM1- and M2-excited neu-
rons did not show enhanced movement-related activity in expert ses-
sions, in contrast to Th-excited neurons (Extended Data Fig. 10c–h). 
These results underscore the unique role of thalamic inputs in driving 
movement-encoding M1 L2/3 neurons in experts.

Specific encoding in Th-excited neurons
The results above suggest that Th-excited neurons in experts preferen-
tially encode the learned movement. We sought to define the specific 

behavioural features encoded by the population of Th-excited neurons. 
However, this was challenging, in part because of the small number of 
Th-excited neurons in each imaging field. To overcome this issue, we 
developed shared representation discovery (ShaReD), a computational 
technique that extends canonical correlation analysis (CCA) for aligning 
high-dimensional paired multimodal data across individuals (Fig. 3a). 
In short, ShaReD identifies common feature combinations across all 
individuals in one modality (behavioural features) that are maximally 
correlated with specific feature combinations in another modality (neu-
ral activity) in each individual. Essentially, ShaReD identifies consistent 
projections of the behavioural data (using weights for behavioural 
features) common to all individuals that correlate with projections of 
the neural data in each individual (using weights assigned to neurons). 
This allowed us to use the neural activity from all mice to identify the 
same behavioural features, thus overcoming the limited number of 
neurons in each mouse.

The behavioural features we considered were the lever position and 
lever speed at 21 temporal delays between −1 s and +1 s relative to neural 
activity. Thus, the maximum dimensionality of behavioural features 
considered was 42. Applying ShaReD to movement-active neurons 
in the Th-excited and Th-non-responsive populations separately in 
expert-session data, we identified the behavioural components that 
were highly correlated with neural activity across all mice. We focused 
on the first two components with the highest correlations (Extended 
Data Fig. 11b). The first behavioural component for Th-excited neu-
rons corresponded mostly to a combination of lever position and lever 
speed at positive lags of around 200 ms, indicating that the activity of 
Th-excited neurons preceded movements by around 200 ms (Fig. 3b). 
Conversely, the first behavioural component of the Th-non-responsive 
neurons was broader in time and peaked at a zero-to-slightly-negative 
delay, implying that the activity of these neurons relates more to current 
or immediate past movements (Fig. 3b). The second behavioural com-
ponent was related mostly to a combination of future lever position and 

Fig. 2 | Thalamus-excited M1 L2/3 neurons preferentially encode learned 
movements in experts. a, Top, experimental timeline. Bottom, max-intensity 
projection of in vivo two-photon (2p) fluorescence images of the same FOV in 
M1 L2/3 imaged at the pre-training (session 0) and post-training (session 15) 
opto-mapping sessions and the first (session 1, beginner) and last (session 14, 
expert) training sessions. Scale bar, 50 μm. b, Experimental strategy. ChrimsonR 
is expressed in thalamic neurons and imaging and optogenetic stimulation are 
done in M1. c, Coronal sections of the motor thalamus (top) and M1 (bottom) 
showing the expression of ChrimsonR–tdTomato in thalamic neurons and 
GCaMP6s in cortical neurons. Scale bars, 1 mm. d, Bottom, single-trial responses 
of example Th-excited (left) and Th-rebound (right) neurons. Top, trial averages. 
e, Fractions of Th-excited, Th-rebound and Th-non-responsive neurons during 
pre-training (session 0) and post-training (session 15) opto-mapping sessions 
(n = 7 mice; 1,494 and 1,485 neurons for sessions 0 and 15, respectively).  
f, Reorganization of individual neurons’ responses to the stimulation of thalamic 
inputs during pre-training (session 0) and post-training (session 15) opto-
mapping sessions. Three categories of Th-excited neurons. About half of  
Th-excited neurons were Th-excited in both sessions (stable, n = 47 neurons), 
whereas the rest were only Th-excited in pre-training (loss, n = 51) or post-
training (gain, n = 49) sessions. g, Cross-validated decoding accuracy for 
distinguishing rewarded movement and non-movement time points, computed 
similarly to Fig. 1h. Th-excited neurons outperformed Th-non-responsive 
neurons in experts (t-test, P < 10−12) and in beginners (t-test, P < 0.01). Shaded 
areas show 95% confidence intervals of the mean over cross-validation folds.  
h, Trial-average activity of all Th-excited neurons (blue; 111 neurons) and  
Th-non-responsive neurons (pink; 1,719 neurons) from beginner sessions 
aligned to rewarded movement onset (dashed line). Mean ± s.e.m. P < 0.05, 
rank-sum test on baseline (−1.5 s to −1 s before movement onset) subtracted 
movement-related (0–0.5 s after movement onset) activity. i, Same as h but for 
experts (115 Th-excited neurons, 1,365 Th-non-responsive neurons). P < 0.001, 
rank-sum test. j, Fractions of movement-active, movementsuppressed and 
indiscriminately active neurons within the Th-excited and Th-non-responsive 

populations in beginners (top) and experts (bottom). k, Same as g but for 
movement-active neurons. Th-excited movement-active neurons outperformed 
Th-non-responsive movement-active neurons in experts (t-test, P < 10−9) but not 
in beginners (t-test, P = 0.128; NS, not significant). Shaded areas show 95% 
confidence intervals of the mean over cross-validation folds. l, Same as h but 
for movement-active neurons (53 Th-excited neurons, 501 Th-non-responsive 
neurons). P = 0.49, rank-sum test. m, Same as i but for movement-active neurons 
(69 Th-excited neurons, 444 Th-non-responsive neurons). P < 0.05, rank-sum 
test. n, Histograms of the movement reliability of individual neurons, defined 
as the fraction of rewarded movements during which the neuron is active. Top, 
no significant difference in the movement reliability of Th-excited movement-
active neurons and Th-non-responsive movement-active neurons in beginners 
(P = 0.93, Wilcoxon signed-rank test; signed-rank test). Bottom, Th-excited 
movement-active neurons have higher reliability than Th-non-responsive 
movement-active neurons in experts (P < 0.01, signed-rank test). o, Histograms 
of the activity onset of individual movement-active neurons. Top, no significant 
difference between Th-excited movement-active neurons and Th-non-
responsive movement-active neurons in beginners (P = 0.05, signed-rank test). 
Bottom, the activity onset of Th-excited movement-active neurons is earlier 
than that of Th-non-responsive movementactive neurons and precedes 
movements in experts (P < 0.05, signed-rank test). Vertical broken lines indicate 
the median. p,q, Correlation-based functional connectivity. p, In beginners, 
Th-excited neurons have a higher connection probability than Th-non-
responsive neurons with movementactive neurons (P < 0.001, signed-rank 
test) but not with movement-suppressed neurons (P = 0.805). Right,  
schematic representing connection probabilities at beginner sessions. q, In 
experts, Th-excited neurons have a higher connection probability than Th-non-
responsive neurons with movement-active neurons (P < 0.001, signed-rank test) 
but a lower connection probability with movementsuppressed neurons 
(P < 0.05, signed-rank test). All tests are two-sided. For panels g–i, k and m–q,  
*P < 0.05, **P < 0.01 and ***P < 0.001.
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past lever speed for both Th-excited and Th-non-responsive neurons 
(Extended Data Fig. 11a). To evaluate the specificity of the temporal 
relationship that we discovered with ShaReD—in which the activity of 
movement-active Th-excited neurons precedes behavioural features 
by around 200 ms—we performed a further analysis. We temporally 
shifted the behavioural component weights (which already capture this 
approximately 200 ms precedence) and decoded the shifted behav-
ioural projections using the activity of Th-excited neurons (Extended 
Data Fig. 11c). The decoding accuracy peaked at a shift of zero, con-
firming that the leading temporal relationship identified by ShaReD 
was indeed optimal.

We next investigated the type of movements that these behavioural 
components represent, and how the behavioural components relate to 
the learned movement. We projected rewarded movements onto the 
first behavioural components of Th-excited and Th-non-responsive 

neurons (Fig. 3c). We analysed these projections separately for move-
ments with low and high similarity to the learned movement pattern 
(Methods). The projections onto the first behavioural component of 
Th-excited neurons consistently preceded those of Th-non-responsive 
neurons across all movements. Notably, for movements that were 
highly similar to the learned movement, the Th-excited projections 
exhibited a stronger modulation amplitude (Fig. 3c, right), compared 
with low-similarity movements (Fig. 3c, left). Thus, the combina-
tion of behavioural features that best correlates with the activity of 
Th-excited neurons is maximized near the onset of the learned move-
ment. These observations suggest that Th-excited neurons in experts 
encode the learned movement, with substantial activity preceding 
the movement.

Refinement of the thalamic influence on M1
We have shown that Th-excited neurons in experts preferentially encode 
the learned movement, and that this preferential encoding emerges 
during learning. The improvement during learning could arise from 
two scenarios, which could co-exist. In the first scenario, the same 
neurons are Th-excited throughout learning, but they improve their 
encoding of the learned movement during learning. In the second sce-
nario, different neurons are Th-excited before and after learning, with 
the neurons encoding the learned movement becoming Th-excited, 
and/or the neurons with poor encoding losing their responsiveness 
for thalamic inputs. We evaluated these scenarios by examining the 
movement-related activity of stable, loss, and gain Th-excited neurons 
as defined above (Figs. 2f and  4a). In this nomenclature, stable and loss 
neurons are Th-excited in beginners, and stable and gain neurons are 
Th-excited in experts. Discriminating between rewarded movement 
and non-movement time points, we found that, notably, the popula-
tion that best encoded rewarded movements in beginners was the 
gain neurons that were not Th-excited in beginners, whereas the loss 
neurons had the lowest decoding accuracy (Fig. 4b, left). In experts, 
the stable and gain neurons substantially improved their encoding 

b

C
om

p
on

en
t 

w
ei

gh
t

Following
movements

Preceding
movements

Time delay (s)

–1.0 –0.5 0 0.5 1.0

0.5

0

–0.5

Time delay (s)

c

Movement
onset

–1.0 –0.5 0 0.5 1.0

−0.2

0

0.2

0.4

C
om

p
on

en
t 

w
ei

gh
t

Lever position

–1.0 –0.5 0 0.5 1.0

Lever speed

−0.5 0 0.5 1.0 1.5

Time (s)

−0.5 0 0.5 1.0 1.5

Time (s)

−1.0

−0.5

0

0.5

1.0

P
ro

je
ct

ed
 b

eh
av

io
ur

Movement
precedes

For movements dissimilar 
to learned movement

For movements similar
to learned movement

Neurons
precede

Movement
precedes

Neurons
precede

Time delay (s)

Projected behaviour onto 
the �rst component of

Joint spacea

Mouse 1
a1

a2

Identical projection

X1 Y1

Y2
X2

Neural data: X Behavioural data: Y

X1a1

X2a2Mouse 2

Mouse-speci�c projection
b

Y1b

Y2b

Th-excited neurons

Th-non-responsive neurons

Combinations of behavioural 
features maximally correlated with

Th-excited neurons

Th-non-responsive neurons

Movement
onset

Correlate current
neural activity with

Fig. 3 | ShaReD reveals that Th-excited neurons in experts encode upcoming 
learned movements. a, Schematic of ShaReD, an extension of CCA for 
generalizing across multiple animals. Using synthetic datasets for two 
individuals (i), we visualize neural data (Xi) and behavioural data (Yi) in three 
dimensions. Each axis represents one neuron (left column) or one behavioural 
feature (right column). ShaReD finds the optimal individual neural projection 
vector ai and behavioural projection vector b that maximize the correlation 
between Xiai and Yib across all individuals. Red arrows indicate projection 
vectors for the first component. If the projected data is correlated, the paired 
points will align near the diagonal in the joint space (middle column). b, Weights 
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areas show 95% confidence intervals of the mean over cross-validation folds. 
For Th-non-responsive neurons, weights are computed from 50 neuron 
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of rewarded movements during learning and clearly outperformed 
the loss neurons (Fig. 4b, right). The encoding of loss neurons did 
not improve over learning. The fraction of movement-active neurons 
increased in the stable and gain populations, but not in the loss neurons, 
partially explaining the decoding results above (Fig. 4c). However, 
even when we focused our decoding analysis on movement-active 
neurons of each population, the same trends were observed. Namely, 
in beginners, decoding by movement-active neurons was best in the 
gain population, followed by the stable and then the loss neurons 
(Fig. 4d, left). In experts, the stable movement-active neurons out-
performed the gain population, which, in turn, was better than the 
loss population (Fig. 4d, right). In addition, in experts, stable and 
gain movement-active neurons had a higher reliability for rewarded 
movements (Fig. 4e) and an earlier activity onset relative to movement 
onset than did loss movement-active neurons (Extended Data Fig. 12b), 
although these differences did not reach statistical significance, prob-
ably because of the limited numbers of neurons in each category. These 
results indicate that the learning-related reorganization of the tha-
lamic influence on M1 involves both of the two scenarios discussed. 
Namely, the stably Th-excited neurons improve their movement 
encoding during learning. Furthermore, some of the neurons that are 
strongly movement-encoding but not Th-excited in beginners become 
Th-excited in experts. Conversely, some of the neurons with poor 
movement encoding lose their responsiveness to thalamic inputs as  
learning progresses.

Th inputs are required in experts but not in beginners
The results so far suggest that a specific drive of M1 movement-active 
neurons by thalamic inputs is crucial for generating learned move-
ments. To assess the functional importance of thalamic activity in the 
expert behaviour, we examined the effect of inactivating the motor 
thalamus on behaviour.

To inactivate motor-thalamus neurons, we unilaterally expressed 
inhibitory DREADDs (hM4Di22) or tdTomato as a control in tha-
lamic neurons by injecting AAV-hSyn-DIO-hM4D-mCherry (or 
AAV-FLEX-tdTomato) into the motor thalamus of Vglut2-Cre mice 
(Fig. 5a). These mice were trained for two sessions without manipula-
tion. Then, on day 3, we acutely inactivated the motor thalamus by 
intraperitoneal (i.p.) injection of clozapine-N-oxide (CNO) (Fig. 5b). This 
inactivation had no significant effect on performance in these beginner 
mice (Fig. 5c). By contrast, when we trained another group of mice for 
13 sessions to reach the expert stage and then inactivated the motor 
thalamus by i.p. injection of CNO, their performance was significantly 
impaired, as indicated by fewer rewarded trials and increased time from 
cue to reward in the hM4Di group (Fig. 5d,e). Thus, motor-thalamus 
activity is crucial for the expert but not for the beginner behaviour. 
This aligns with the refinement of thalamic influence on M1 during 
learning described above.

The effects of motor-thalamus inactivation could in theory be medi-
ated by thalamic projections to brain areas other than M1. To directly 
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quartiles; whiskers, 1.5× interquartile range; points, outliers. For panels b and d, 
**P < 0.01 and ***P < 0.001.
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examine the effect of motor-thalamus inputs to M1, we selectively 
inactivated motor-thalamus axons in M1. Using the same approach, 
we expressed hM4Di or tdTomato in the motor thalamus (Fig. 5f), and 
trained these mice for 13 days to expert level. We then locally adminis-
tered CNO into M1 on session 14 (Fig. 5g). This manipulation, similarly, 
resulted in fewer rewarded trials and increased cue-to-reward times in 
the hM4Di group (Fig. 5h). Thus, motor-thalamus activity—and specifi-
cally, its inputs to M1—is necessary for the precise execution of learned 
movements in experts.

Discussion
Our results reveal that thalamic inputs to M1 are an essential driver 
for the initiation and execution of learned movements. Our findings 

are consistent with previous studies highlighting the importance of 
thalamic inputs in controlling voluntary movements23–27. Furthermore, 
our longitudinal analysis during learning provides a new perspective 
on how this learned circuit emerges from a precise change in the 
cellular-level influence of the motor thalamus on M1.

Thalamic inputs to M1 in learned movements
Here we provide several lines of evidence to support a model in which 
the brain generates the M1 activity pattern to execute learned move-
ments. In this model, immediately before the initiation of the move-
ment, the motor thalamus activates a small group of core neurons in 
M1. This specific excitation gets amplified and transformed by selective 
connectivity in M1, leading to the spatio-temporal population activity 
that drives the learned movement.
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Circles correspond to individual mice. f, Experimental strategy. hM4Di- 
mCherry or tdTomato was expressed in motor thalamic neurons and CNO was 
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expression in thalamic axons in M1. Scale bar, 1 mm. Bottom, experimental 
timeline for inactivation of thalamic axons in M1 in experts. h, Local 
administration of CNO in M1 in experts resulted in a significantly lower number 
of rewarded trials (left; P < 0.05, rank-sum test), a significantly longer time 
between cue and reward (right; P < 0.05, rank-sum test), and a non-significant 
increase in the time from cue onset to movement onset (middle; P = 0.26, 
rank-sum test) in the hM4Di group (n = 6 mice) compared with the tdTomato 
group (n = 3 mice). Circles correspond to individual mice. All tests are 
two-sided. i, Model schematic. Arrows represent functionally connected 
neurons. For panels e and h, *P < 0.05 and **P < 0.01.
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The degree of autonomy of M1 in producing the movement-generating 
activity pattern in M1 has been debated23,28–31. In one extreme, M1 
could function as an autonomous dynamical system, which gener-
ates complex activity patterns through M1-intrinsic connectivity, 
perhaps in response to non-specific inputs. In the other extreme, M1 
could be a purely passive machine that simply reflects the specific 
and time-varying input without transforming it. Our results do not 
support either of these extremes. Rather, we propose that specific 
and time-varying inputs from the motor thalamus interact with local 
connectivity in M1 to produce the movement-generating activity pat-
tern. The balance between inputs and intrinsic connectivity might 
depend on the complexity of the learned skill: longer or more intricate 
sequences might involve multiple local circuits, each driven by specific 
thalamic inputs, forming a sequence of motor modules that collectively 
generate the skill.

Our results extend previous studies highlighting the role of thalamic 
inputs in enabling M1 to initiate learned movements32,33. Our approach 
uncovered a small fraction (around 9%) of M1 L2/3 neurons that are 
strongly driven by thalamocortical inputs. Although these Th-excited 
neurons might not all be monosynaptically driven by thalamic inputs, 
they are still likely to be excited by local effects of thalamic inputs in 
M1, because Th-excited neurons were not excited by stimulation of 
the other main inputs (Extended Data Fig. 10). It is also likely that our 
approach only reveals strong connections, and excitation that is below 
the threshold for spike generation or below the limit of detection by cal-
cium imaging would remain undetected. Furthermore, thalamic inputs 
to M1 L2/3 come mostly from the motor thalamic nuclei, including VAL 
and VM, and from nearby nuclei such as VPM, VPL and PO (Extended 
Data Fig. 3). Dissociating potentially distinct functions of M1 inputs 
from these nuclei would provide more detailed descriptions of the 
neural circuits that underlie learned movements24,25,34. Regardless, 
our model resembles what was proposed in a study in zebra finches35, 
which suggested that the motor thalamic nucleus uvaeformis activates 
a subset of neurons in the zebra finch song nucleus HVC (homologous 
to the primary or premotor motor cortex in mammals36) to initiate sing-
ing. The conservation of this circuit motif across evolution underscores 
its importance for learned behaviours.

Motor learning sculpts the thalamus–M1 circuit
Our longitudinal investigation identified a number of learning-related 
changes that contribute to the operation of the expert circuit. First, 
the amount of movement-related information in the thalamic input 
activity increased. Second, possibly as a result of the first, the stably 
Th-excited neurons increased their movement-related activity. We 
note that plasticity in downstream circuits could also contribute to 
this change. Third, some of the neurons with strong movement-related 
activity in beginners that were not Th-excited gained Th responsive-
ness. Fourth, some of the Th-excited neurons in beginners with low 
movement-related activity lost their Th responsiveness after learning. 
Finally, the functional connectivity within M1 became more refined. 
These parallel changes ensure that thalamic inputs selectively target 
the correct neurons to drive the learned movement.

The third and fourth changes suggest that the motor thalamus learns 
to activate the right neurons and to stop driving the wrong neurons. 
Such a reorganization probably requires precise plasticity during 
learning. Indeed, motor learning induces plasticity of both thalamo-
cortical axonal boutons innervating M1 (ref. 32) and local M1 dendritic 
spines1,4,24,37,38, and spine plasticity of M1 L2/3 neurons during motor 
learning has been shown to be directed to form synaptic clusters dedi-
cated to the learned movement4,5. These synaptic changes coincide with 
large-scale changes in the transcriptional states of M1 L2/3 neurons39. 
We propose that specific, targeted thalamocortical plasticity refines 
the thalamocortical pathway so that the motor thalamus activates the 
appropriate subset of M1 L2/3 neurons to initiate the process of gen-
erating learned movements. Other mechanisms, such as cell-intrinsic 

changes in excitability40, might also contribute to such learning-related 
reorganizations. The parallel refinement of the thalamocortical path-
way and local recurrent connectivity within M1 results in a precise cir-
cuit to generate a reproducible pattern of activity dedicated to the 
learned movement (Fig. 5i), composed of Th-excited neurons that are 
functionally connected to movement-active neurons. This functional 
connectivity might be dynamically gated by network states, which 
could explain why our stimulation during the opto-mapping sessions 
did not lead to full-blown movement-generating population activity.

Notably, inactivation of the motor thalamus did not affect this behav-
iour in beginner mice. It is possible that a more complete inactivation 
could lead to behavioural effects in beginners, but the same manipu-
lation significantly impaired the behaviour in experts, supporting 
an increasing role of the motor thalamus in movement generation as 
learning progresses. We also note that previous studies have found that 
extensive training over months can make the movements that are at 
first M1-dependent become M1-independent10,11. The expert stage in 
our current study is a stage at which M1 is still crucial for the behaviour. 
These observations highlight that the brain has multiple circuits that 
can generate similar behaviours, and the degree of learning is a deter-
minant of which circuit is used. Furthermore, other long-range inputs 
that we examined also exhibited learning-related changes in activity. 
Future studies should dissect the specific contributions of these inputs 
to the dynamics and plasticity of M1 circuits during motor learning.

ShaReD
To understand the relationship between the ensemble activity of the 
small number of Th-excited neurons per animal and behaviour, we devel-
oped an analytical approach that we termed ShaReD. This technique 
builds on CCA41, which identifies correlations between neural features 
and behavioural features, allowing both the behavioural feature space 
and the space of all neurons’ activities to be high-dimensional. This high 
dimensionality calls for a systematic investigation of the relationship 
between neural population activity and combinations of behavioural 
features. Although previous methods have examined these relationships 
by jointly modelling neural and behavioural dynamics, they often lack 
generalizability across individuals42,43, or necessitate identical behaviour 
between individuals44. ShaReD takes a different approach by identifying 
a single behavioural projection shared across individuals.

Applying ShaReD to our data revealed specific behavioural subspaces 
(that is, combinations of lever position and speed at different time lags) 
that were commonly correlated with individual subspaces of Th-excited 
neuron activity across individuals. These specific subspaces within 
the high-dimensional behavioural space would have been difficult to 
identify without the unsupervised approach facilitated by ShaReD. 
We present ShaReD as a generalizable dimensionality reduction tech-
nique to identify specific behavioural modes that are shared across 
individuals and to learn how they relate to patterns of neural activity 
in different individuals.

ShaReD operates on the assumption that there are common com-
binations of behavioural features encoded across individuals, and 
identifies these common components. Thus, it is designed to mostly 
ignore variability of behavioural encoding across individuals. This is 
a useful property, but also a limitation that should be considered, and 
we stress the importance of using multiple analytical approaches to 
investigate how neural activities represent behaviours that might be 
heterogeneous across individuals.
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Methods

Mice
All animal procedures were performed in accordance with guidelines 
and protocols approved by the UCSD Institutional Animal Care and 
Use Committee and the National Institutes of Health (NIH). C57BL/6 
(Carles River), Vglut2-Cre (Vglut2-ires-cre, JAX stock 016963), 
CaMKII-tTA (B6;CBA-Tg(Camk2a-tTA)1Mmay/J, JAX stock 003010) 
and tetO-GCaMP6s (B6;DBA-Tg(tetO-GCaMP6s)2Niell/J, JAX stock 
024742) mice were group-housed in disposable cages with stand-
ard bedding in a temperature-controlled room (around 21 °C) with a 
reversed light cycle (10:00–22:00: dark). All experiments were per-
formed during the dark cycle. Male and female mice were used at 
random for experiments.

Surgeries and virus injections
Adult mice (seven weeks or older) were anaesthetized with 1–2% 
isoflurane and injected with Baytril (10 mg kg−1), dexamethasone 
(2 mg kg−1) and buprenorphine (0.1 mg kg−1) subcutaneously at the 
beginning of surgery to prevent infection, inflammation and discom-
fort. A custom-built head-plate was glued and cemented to the skull. 
For two-photon imaging experiments, a craniotomy (around 3 mm in 
diameter) was performed over the right caudal forelimb area of M1, 
centred at 0.3 mm anterior and 1.5 mm lateral from the bregma. A glass 
window was implanted over the craniotomy. The edges between the 
window and the skull were filled with Vetbond (3M). The window was 
further secured with cyanoacrylate glue and dental acrylic.

For imaging thalamic projections to M1, virus solutions of AAV5- 
hSyn-FLEX-axon-GCaMP6s (Addgene viral preparation 112010) were 
injected with glass pipettes into the following coordinates of Vglut2-Cre 
mice: 1 mm posterior, 1 mm lateral to bregma at a depth of around 
3.7 mm from the pia (approximately 0.3 μl). Pipettes were left in the 
brain for 15 min after each injection to minimize backflow. Imaging 
was performed around four weeks after surgery.

For imaging S1, cM1 and M2 projections to M1, virus solutions of 
AAV5-hSyn-FLEX-axon-GCaMP6s and AAV1-CMV-PI-Cre were injected 
with glass pipettes into the following coordinates: S1: 0.8 mm posterior, 
2.1 mm lateral to bregma at a depth of around 0.25–0.5 mm from the pia 
(approximately 0.1 μl); cM1: 0.3 mm anterior, 1.5 mm lateral to bregma 
at a depth of around 0.25–0.5 mm from the pia (approximately 0.4 μl); 
M2 (rostral forelimb area): 2.5 mm anterior, 0.9 mm lateral to bregma 
at a depth of around 0.25–0.5 mm from the pia (approximately 0.2 μl). 
Pipettes were left in the brain for 15 min after each injection to avoid 
backflow. Imaging was performed around four weeks after surgery.

For in vivo two-photon imaging of ChrimsonR axons, virus solutions 
of AAV1-hSyn-FLEX- GCaMP6f (Addgene viral preparation 100833) and 
AAV5-hSyn-FLEX-ChrimsonR-tdTomato (Addgene viral preparation 
62723) were injected into the following coordinates of Vglut2-Cre mice: 
1 mm posterior, 1 mm lateral to bregma at a depth of around 3.7 mm 
from the pia (approximately 0.4 μl).

For in vivo two-photon imaging of M1 L2/3 neurons combined with 
optogenetic stimulation of thalamocortical axons, virus solutions 
of AAV5-hSyn-FLEX-ChrimsonR-tdTomato were injected into the fol-
lowing coordinates of CaMKII-tTA::tetO-GCaMP6s::Vglut2-Cre triple 
transgenic mice: 1 mm posterior, 1 mm lateral to bregma at a depth 
of around 3.7 mm from the pia (approximately 0.4 μl). For in vivo 
two-photon imaging of M1 L2/3 neurons combined with optoge-
netic stimulation of S1, cM1 and M2 axons, virus solutions of AAV1- 
hSyn-ChrimsonR-tdTomato were injected into the following coor-
dinates of CaMKII-tTA::tetO-GCaMP6s transgenic mice: S1: 0.8 mm 
posterior, 2.1 mm lateral to bregma at a depth of around 0.25–0.5 mm 
from the pia (approximately 0.1 μl); cM1: 0.3 mm anterior, 1.5 mm late ral 
to bregma at a depth of around 0.25–0.5 mm from the pia (approxi-
mately 0.4 μl); M2 (rostral forelimb area): 2.5 mm anterior, 0.9 mm 
lateral to bregma at a depth of around 0.25–0.5 mm from the pia 

(approximately 0.2 μl). Experiments were performed around six weeks  
after surgery.

For motor-thalamus inactivation, virus solutions of AAV5-hSyn- 
DIO-hM4Di-mCherry (Addgene viral preparation 44362) (diluted 1:5) 
or AAV1-FLEX-tdTomato (Addgene viral preparation 51503) (control 
group) were injected into the following coordinates of Vglut2-Cre mice: 
1 mm posterior, 1 mm lateral to bregma at a depth of around 3.7 mm 
from the pia (approximately 0.4 μl). Experiments were performed 
around four and eight weeks after surgery for i.p. CNO administration 
and local M1 CNO injection, respectively.

Behaviour
Water restriction started 1–1.5 weeks before the behavioural training. 
Mice received progressively lower amounts of drinking water until sta-
bilizing at 1 ml per day. Weight was constantly monitored to ensure no 
more than 30% of the starting body weight was lost. Mice were trained 
to perform the lever-press task one session per day for 14 days under 
a microscope. The hardware and software used for behavioural train-
ing have been previously described45. In brief, the lever comprised a 
piezoelectric flexible force transducer (LCL-113G, Omega Engineering) 
attached to a brass rod. The lever position was continuously recorded 
using LabJack and Ephus (controlled by MATLAB), which worked with 
custom software running on LabVIEW (National Instruments) that 
monitored threshold crossing. Dispatcher software controlled the 
behavioural set-up (Z. Mainen and C. Brody, controlled by MATLAB). 
Mice used their left paw to grasp a lever attached to a force transducer 
while resting their right paw on a stationary block. A 6-kHz tone marked 
a cue period (up to 10 s), during which a successful lever press was 
rewarded with water (around 10 μl per trial) paired with a 500-ms, 
12-kHz tone, and followed by an inter-trial interval (ITI, variable duration 
of 8-12 s). A successful lever-press movement was defined as crossing 
two thresholds (around 1.5 mm and 3 mm below the resting position) 
within 200 ms. Failure to press the lever passing the two thresholds 
during the cue period triggered a loud white-noise sound and the start 
of an ITI. Lever presses during ITIs were neither rewarded nor punished. 
Each session consisted of 100 trials.

Lever-press movement analysis
Movement analyses were performed as previously described1,4. In brief, 
lever displacement traces (voltage recordings from the force trans-
ducer) were downsampled from 10 kHz to 1 kHz, then filtered using a 
four-pole 10 Hz low-pass Butterworth filter, after which the velocity of 
the lever was determined by smoothing the difference of consecutive 
points with a moving average window of 5 ms. The envelope of the lever 
velocity was then extracted using a Hilbert transform, and movement 
bouts were defined by the envelope crossing a threshold of 4.9 mm 
per second. Each movement bout was extended by 75 ms on either 
side. Bouts separated by less than 500 ms were considered continuous. 
Movement start and end times were defined as the points at which the 
lever exceeded or fell below the thresholds defined by rest periods 
before and after the movement bouts. Thresholds were defined as the 
resting position plus the 99th percentile of the noise distribution, in 
turn defined as the difference between the Butterworth smoothed trace 
and the original trace. For reaction-time analysis, the trials in which 
mice moved the lever within 100 ms before the cue start time were 
excluded from analysis. Movement correlations within sessions were 
calculated using the median of all pairwise correlations of rewarded 
movements that started after cue onset within a single session. Move-
ment correlations across sessions were found using the median cor-
relations of all possible pairs of movements between sessions.

In vivo two-photon imaging
Imaging was performed using a commercial two-photon microscope 
(B-Scope, ThorLabs) equipped with a ×16/0.8-NA objective (Nikon) and 
a Ti-Sa laser (Mai Tai) tuned to 925 nm. Image acquisition was controlled 



Article
with ScanImage software. Images (512 × 512 pixels at ×2 zoom for neu-
ronal recording or ×5 zoom for axonal recording) were recorded at 
around 30 Hz for the duration of the behavioural session. Frame times 
were recorded and synchronized with behavioural recordings using the 
Ephus software. For some mice, two FOVs were recorded on interleaved 
days. The FOVs did not overlap.

For axon imaging, we imaged at the most superficial depth that con-
tained many labelled axons. This was almost always within 200 μm of 
the pia surface. Soma imaging was typically done at a depth of 200–
300 μm from the pia surface.

Image analysis
ROI identification and fluorescence analysis. Suite2P software46 was 
used to generate regions of interest (ROIs) corresponding to individual 
neurons or axonal boutons and extract their fluorescence. ROI clas-
sifications by the automatic classifier were further refined by manual 
inspection. Signals from ROIs were deconvolved with a non-negative 
deconvolution algorithm to remove fluorescence decay and estimate 
underlying spiking activity47. The estimated spikes were used for all 
neural activity analyses, besides analysing neuronal activity during 
opto-mapping sessions. For opto-mapping analysis, fluorescence time 
series were produced by averaging the pixels within each ROI (minus 
surrounding neuropil) for all imaging frames. The time-varying baseline 
of a fluorescence trace (F0) was estimated by smoothing inactive por-
tions of the trace using a previously described iterative procedure1. In 
brief, this process identified the trace’s active and inactive portions, 
removing active portions and using the LOESS-smoothed inactive por-
tions (interpolated across active periods) to estimate the time-varying 
baseline. The normalized ΔF/F0 trace was then calculated, in which ΔF 
was found by subtracting the baseline trace from the raw trace, and F0 
is the calculated time-varying baseline.

To match neurons across multiple imaging sessions, we used the 
MATLAB code ROIMatchpub (https://github.com/ransona/ROIMatch-
Pub), followed by manual confirmation and corrections after auto-
mated detection.

Classification of movement-modulated neurons. Movement- 
modulated neurons were classified as previously described1. In brief, 
the dot product of the binarized lever trace (movements versus non- 
movements) and estimated spikes was calculated for each ROI. This 
value was compared to the dot products when shuffling the movement 
periods 1,000 times. Actual values above the 97.5 percentile of the shuf-
fled distribution were classified as movement-active, and actual values 
below the 2.5 percentile were classified as movement-suppressed. All 
other cells were considered indiscriminately active.

Activity onset. To estimate the timing of the activity onset of individual 
neurons during rewarded movements, the activity of each neuron 
(estimated spikes) was aligned to the onsets of rewarded movements. 
We only considered movements that did not have another movement 
within 2 s before movement onset to avoid contamination of activity 
related to previous movements. The activity of each neuron was aver-
aged across all rewarded movements, and the activity onset time was 
defined by the first frame in which activity was higher than the averaged 
baseline activity (defined as −2 to −1.5 s before movement onset) by 
more than one standard deviation and remained above this criterion 
for 90 ms (three successive frames).

Population activity correlation. The stability of the population across 
trials was assessed by the correlation of population vectors. Each popu-
lation vector includes the concatenated activity of all neurons during 
rewarded movement epochs (2-s time window starting at 0.5 s before 
the onset of the rewarded movement). The movement–movement 
activity Pearson’s correlation was then calculated between all pairs of 
all population vectors per FOV.

Correlation-based functional connectivity. Functional connectivity 
was inferred using the fast and robust connectome inference (FARCI) 
method21. FARCI was designed to infer the functional neuronal con-
nectome from in vivo two-photon Ca imaging. In brief, after steps of 
estimated spike thresholding (three standard deviations) and smooth-
ing (three frames), FARCI uses partial correlations between pairs of 
neurons to infer their connectivity. We used the following parameters 
for spike thresholding, smoothing and partial correlations: 3, 3 and 2, 
respectively.

Optogenetic mapping
Optogenetic stimulation was performed by delivering 660-nm LED 
light (Thorlabs, M660L3), with a full width at half maximum of 10 nm, 
through a bandpass filter (660/10 nm, Thorlabs, FB660-10) and was 
combined with the two-photon excitation light for imaging with a 
750-nm long-pass filter (Chroma T750lpxrxt-UF1). These two lights 
were directed to the sample by a primary dichroic mirror reflecting 
640–700 nm and 900–1,000 nm (Chroma ZT640rdc-sp-UF2). Each 
light-pulse train duration was 1 s at 25 Hz, controlled by Arduino with 
10-ms pulses. Each opto-mapping session included 45 trials (each trial 
is one light-pulse train), separated by around 20 s, at three light intensi-
ties (8 mW, 14 mW and 30 mW from the objective).

For optogenetic mapping sessions with inactivation of the motor 
thalamus, muscimol was injected using glass pipettes unilaterally into 
the motor thalamus of CaMKII-tTA::tetO-GCaMP6s::Vglut2-Cre triple 
transgenic mice: 1 mm posterior, 1 mm lateral to bregma at a depth of 
around 3.7 mm from the pia (approximately 0.3 μl of 5 μg μl−1 in cortex 
buffer). Mice were allowed to recover in their home cage on a heating 
pad for 1 h before optogenetic mapping sessions. Injected mice showed 
obvious turning behaviour, which confirmed successful injections.

Classification of responsive neurons. Activity (ΔF/F0) 0.5 to 1 s after 
the onset of a 1-s opto stimulation (LED on) was compared to activity 
2 to −1 s before the onset of the opto stimulation (baseline) across all 
15 trials in each light intensity. To classify a neuron as Th-excited or 
Th-rebound, it must be classified as such in at least one of the three 
light intensities according to the following criteria. For a neuron to 
be classified as a Th-excited neuron: first, a P value lower than 0.01 
using the Wilcoxon signed-rank test when comparing LED on time to 
baseline. Second, an average increase in activity from baseline to LED 
on larger than one (ΔF/F0).

To classify a neuron as a Th-rebound neuron, the activity from the 
termination of the opto stimulation to 0.5 s later (LED off) was com-
pared to the LED on activity. If a neuron had a P value lower than 0.01 
using the Wilcoxon signed-rank test, when comparing LED off to LED 
on and an average increase in activity from LED on to LED off larger 
than one (ΔF/F0), this neuron was classified as a Th-rebound neuron. 
All neurons not classified as Th-excited or Th-rebound were classified 
as Th-non-responsive.

Population decoding analysis
The decoding analysis was performed using linear maximum margin 
classifiers (SVM) using the scikit-learn SVC package48 to decode the 
time points of rewarded movements from neural data. We used the 
primal optimization problem formulation (dual=False) in the SVM 
implementation for improved computational efficiency with our 
high-dimensional feature space.

Preprocessing and cross-validation. The neural data (estimated 
spikes for soma or ΔF/F for axons) was first preprocessed. This preproc-
essing step consisted of binning the data to 100-ms bins. For decoding, 
we used tenfold cross-validation. For a given session, the trials were 
randomly assigned to one of the ten folds. To ensure that the neural 
data from nearby trials did not contaminate each other, we excluded 
ten time bins from the beginning and end of each trial.

https://github.com/ransona/ROIMatchPub
https://github.com/ransona/ROIMatchPub


Pseudopopulation generation and decoding analysis. Pseudo- 
simultaneous populations of neural activity (‘pseudopopulations’)49 
for decoding rewarded movements were created by pooling activity 
from neurons or axonal boutons from all mice. To discriminate between 
rewarded movement and non-movement time points, we first preproc-
essed both the neuronal and axonal activity and the behavioural data 
and separated them into ten cross-validation folds. Non-rewarded 
movement time points were excluded from the data in each fold. We 
excluded mice that did not have sufficient time points for both classes 
(rewarded and non-movement time points) in each cross-validation 
fold to ensure balanced sampling.

For each remaining mouse, activity from neurons or axonal boutons 
was z-scored within each set. Response vectors were assembled by 
randomly selecting time bins associated with rewarded movements or 
non-movement time points and combining these into a single n-length 
vector for n total units (neurons or axonal boutons) across all pooled 
mice. We randomly sampled 10,000 vectors and combined them into 
a single pseudopopulation with n units and 10,000 samples50. For each 
cross-validation fold, we created two such pseudopopulations: one 
using data from nine folds for training, and another using the held-out 
fold for testing.

Finally, a linear support vector classifier was trained to predict the 
behavioural label from the training population. For comparing decoder 
performance across different populations with varying numbers of 
units, we randomly subsampled each population from five units up 
to the total number of available units to ensure equal numbers before 
pseudopopulation generation. This subsampling was repeated 50 
times to account for sampling bias. The entire pseudopopulation and 
decoding pipeline was repeated five times. The decoding accuracies 
we report are averaged across these pseudopopulation repetitions 
and sampling repetitions.

ShaReD
ShaReD builds on CCA, which is a statistical method used to identify 
and quantify relationships between two sets of variables. In the con-
text of neuroscience, CCA can be used to uncover linear combinations 
of neural activity features that are maximally correlated with linear 
combinations of behavioural features. This allows us to investigate 
how neural activity patterns relate to specific aspects of behaviour.

CCA operates on two paired datasets, X (neural data) and Y (behav-
ioural data), each containing observations across multiple time points 
and dimensions (e.g., neurons or behavioural features). The core objec-
tive of CCA is to find projection vectors, a for the neural data and b 
for the behavioural data, that maximize the correlation between the 
projected data points. Mathematically, this can be expressed as maxi-
mizing the following function:
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where u = Xa and v = Y b represent the projections of the neural  
and behavioural data onto their respective vectors, provided X and  
Y have been mean-centred and contain T time points. Here, 
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 and 
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Y Y
T  are the neural covariance, neural–behavioural 

cross-covariance and behavioural covariance matrices, respectively.
The optimization problem is typically solved through an eigenvalue 

decomposition of the covariance matrices of the data. This yields a 
set of canonical variates (u1,v1), (u2,v2), ..., each representing a pair of 
maximally correlated linear combinations of neural and behavioural 
features. The strength of the relationship between each pair is quanti-
fied by the corresponding canonical correlation coefficient (ρ).

By examining the weights within the projection vectors a and b, we 
can gain insights into which specific neurons or behavioural features 
contribute most to the shared variance between the two datasets. This 

provides valuable information about the neural encoding of behaviour 
and can help us understand how neural populations represent and 
contribute to specific behavioural patterns.

Although CCA is effective in identifying relationships between neu-
ral and behavioural data within individuals, comparing results across 
multiple individuals can be challenging owing to variations in projec-
tion vectors. ShaReD addresses this limitation by finding a single set 
of behavioural features that are shared across all individuals and maxi-
mally correlated with the neural activity of each individual, allowing for 
the generalization of findings and identification of common patterns 
of neural–behavioural interactions.

ShaReD operates on paired neural and behavioural datasets from 
multiple individuals (X1,Y1), (X2,Y2), …, (Xk,Yk). For each individual k, the 
neural data matrix X R∈k

T N×k k contains Tk time points and Nk neurons, 
whereas the behavioural data matrix Y R∈k

T B×k  contains the same Tk 
time points and B behavioural features. Although the number of time 
points Tk may vary across individuals, the number of behavioural fea-
tures B remains constant. The objective is to find a single projection 
vector R∈ Bb  for the behavioural data and unique neural projection 
vectors a1, a2, ..., ak for each individual, where R∈k

Nka . These vectors 
should be optimized to maximize the sum of squared correlation coef-
ficients across all individuals, which can be achieved using a simple 
objective function, assuming that the neural and behavioural data have 
been mean-centred and that the behavioural data have been whitened 
(see ‘Preprocessing’ subsection). The complete objective function we 
minimize is given by
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k k k  are the normal-
ized covariance matrices for each individual k with Tk time points. The 
average behavioural covariance matrix across individuals is defined 
as ∑C C=YY K k YY

k1 . In this objective function, ωk represents a weight-
ing factor for each individual, allowing for differential weighting of 
datasets on the basis of their importance or size. In our analyses, ωk 
was scaled by the fraction of neurons in each dataset out of the total 
number of neurons across all datasets. This ensured that datasets with 
a larger number of neurons contributed more to the overall objective 
function. The Lagrange multipliers αk and β are introduced to enforce 
constraints on the norms of the projection vectors, ensuring that  
the projected neural data for each individual C( )k XX

k
ka a⊤  and the projec-

ted behavioural data b bC( )YY
⊤  have unit variance.

The objective function also includes regularization terms to ensure 
a well-behaved solution and to incorporate prior knowledge about the 
structure of the data. Specifically, the L1 penalty (controlled by λreg) on 
the behavioural projection vector b promotes sparsity and helps iden-
tify the most relevant and informative behavioural features that con-
tribute most to the shared neural–behavioural correlations across 
individuals. Here, bi corresponds to the ith element of b. In addition, 
a smoothing penalty (controlled by λsmooth) is applied to groups of indi-
ces that represent a discretized continuous variable, where g indexes 
the behavioural variable type (g = 1 for position, g = 2 for speed) and 

j
gb  denotes the projection weight for the jth lag of behavioural variable 

g. By enforcing smooth transitions between consecutive weights 
separately for position and speed features, we impose a smoothness 
constraint akin to temporal continuity. This incorporates prior knowl-
edge about the temporal structure of behaviour and helps prevent 
overfitting to noise or idiosyncrasies in the data. For our analyses, λreg 
and λsmooth were kept at values of 0.02 and 0.04, respectively.

We minimize the objective function in two steps. The first stage 
focuses on the core part of the objective function and involves solving 
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for the minimizer of the first three terms using an eigenvalue decom-
position.

Step 1: initial optimization. To find the initial estimate for the  
first ShaReD component, we set b equal to the normalized eigen-
vector corresponding to the largest eigenvalue of the matrix 

C C C C∑ ω ( ) ( )k k YY YX
k

XX
k

XY
k−1 −1 . This eigenvector represents the initial  

estimate for the shared behavioural projection across all individuals. 
Then, for each individual k we compute the neural projection vector ak  
as follows:
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This step provides individual-specific neural projection vectors that 
maximize the correlation with the shared behavioural projection, serv-
ing as a starting point for further refinement. To ensure the constraints 
are satisfied we compute αk and β as the following:
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Step 2: Gradient descent. Owing to the inclusion of the L1 and smooth-
ness penalties, we cannot obtain a closed-form solution for the mini-
mizer of the entire objective function. Thus, the initial solution is refined  
using gradient descent to incorporate the L1 and smoothing penalties 
and achieve a more stable and generalizable solution. This involves 
iteratively updating the ak and b vectors based on the gradients of the 
objective function with respect to each element. The gradient updates 
for each individual’s neural projection vector ak can be calculated as:
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Similarly, the gradient update for the shared behavioural projection 
vector b is:
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Here, ng represents the number of temporal lags for each behavioural 
variable (for example, position or speed), and b j

g corresponds to the 
jth element of behavioural variable g. The smoothing penalty encour-
ages temporal continuity by promoting similar weights for adjacent 
time lags within each behavioural variable while maintaining independ-
ence between different variables.

This iterative gradient descent process refines both the individual- 
specific neural projections and the shared behavioural projection to 
maximize the sum of squared correlations while incorporating the 
desired regularization properties. At each iteration of the gradient 
descent we recompute αk and β to ensure the constraints are satis-
fied, and orthogonalize the current weights with respect to previously 

found components to ensure we discover independent behavioural 
components.

Deflation. After identifying the first ShaReD component, which con-
sists of the shared behavioural projection vector b and the individual 
neural projection vectors ak, we apply deflation to remove the explained 
(co)variance from the data. This allows for the discovery of subsequent 
ShaReD components that capture additional, independent patterns of 
neural–behavioural correlations.

Deflation essentially removes the contribution of the identified 
ShaReD component from the data, forcing the subsequent optimiza-
tion steps to focus on remaining sources of shared (co)variance. This is 
achieved by projecting the data onto a lower-dimensional subspace that 
is orthogonal to the space spanned by the first ShaReD component. The 
deflated data are then used to repeat the optimization process (steps 
1 and 2) to find the next ShaReD component. This iterative process 
continues until a desired number of components are found or until 
the remaining variance of the data is negligible.

Preprocessing. Before applying ShaReD, we z-scored the data, and 
used singular value decomposition (SVD) to whiten the neural as well 
as the behavioural datasets. Given a matrix Yk, we expressed its SVD as 
USVΤ. To whiten the data, we removed the S matrix and calculated UVΤ. 
This ensures that the covariance matrix is the identity matrix, which 
standardizes the variance across all dimensions without altering the 
original orientation of the data. This step ensures that all variables 
contribute to the analysis equally.

Projected behaviour visualization. To analyse how different move-
ment patterns relate to the behavioural components identified by 
ShaReD, we first downsampled the raw lever position data from 
1,000 Hz to 100 Hz by averaging within non-overlapping 10-ms win-
dows. For each mouse, we defined the learned movement pattern by 
randomly selecting half of the rewarded movements and averaging 
their position trajectories. This sampling and averaging procedure was 
repeated ten times to mitigate sampling bias in identifying the learned 
pattern. For the remaining movements not used to define the learned 
pattern, we quantified their similarity to the learned movement by 
calculating the correlation between their lever position traces from 
movement onset to 1 s after onset.

We calculated lever speed from the downsampled position data by 
taking the absolute difference between averages of adjacent 100-ms 
bins (ten samples at 100 Hz). For both lever position and lever speed, 
we created delay matrices in which each row represented a 2.1-s sliding 
window (210 samples at 100 Hz), averaged into 21 non-overlapping 
bins of 10 samples each. These 21 bins correspond to the temporal 
structure of the ShaReD behavioural components (ten past lags, one 
present and ten future lags for each behavioural variable). The final 
behavioural projection was computed by applying the correspond-
ing ShaReD weights (21 weights each for position and speed) to these 
binned averages, with the window sliding forward one sample (10 ms)  
at a time.

To visualize how different movements project onto the behavioural 
components, we pooled trials across all mice and grouped them on the 
basis of their similarity to the learned pattern. Trials were divided into 
high-similarity (correlation > 0.7) and low-similarity (correlation < 0.4) 
groups, with these thresholds chosen to ensure approximately equal 
numbers of trials in each group. Owing to the 2.1-s window required for 
the 21 ShaReD time bins (ten past lags, one present and ten future lags 
at 10 Hz), projecting our original movement data (−1.5 s to 2.5 s around 
movement onset) yielded projection values spanning from −0.45 s to 
1.45 s relative to movement onset. For both high- and low-similarity 
groups, we calculated projections onto the behavioural components 
of both Th-excited and Th-non-responsive populations. The shaded 
regions around each trajectory represent the standard deviation across 



ten iterations of randomly selecting different sets of movements to 
define the learned pattern.

Chemogenetic inactivation
For inactivating the motor thalamus, CNO (Enzo Life Sciences) was 
dissolved in sterile saline to a concentration of 2.5 mg ml−1 and injected 
i.p. at a 10 mg per kg body weight dose 45 min before the behavioural 
session.

For locally inactivating motor thalamic inputs in M1, CNO (1 mM) 
was injected into three locations in M1 (100 nl per location) at 0.5 mm 
below the pia surface 15 min before behavioural training.

Only mice that had hM4Di expression in the motor thalamus (VM and 
VAL) confirmed by histology were included in the analysis. Investiga-
tors were blinded to the identity of the mouse (hM4Di versus control) 
during behavioural training and to the performance of the mouse when 
examining hM4Di expression.

Histology
Mice were anaesthetized and transcardially perfused with ice-cold 
0.1 M phosphate-buffered saline (PBS) (pH 7.4), followed by perfusion 
with ice-cold 4% paraformaldehyde (PFA) solution. Isolated brains 
were post-fixed overnight at 4 °C in 4% PFA and cryoprotected in 30% 
sucrose solution for at least 48 h at 4 °C. Microtome-cut (Thermo Scien-
tific Microm HM 430) 40–50-μm free-floating brain (coronal) sections 
were collected in PBS and stored at 4 °C. Slices were mounted with a 
CC mounting medium (Sigma-Aldrich) and imaged using a fluores-
cence microscope (Zen and ApoTome.2, Zeiss). For visualizing axonal 
GCaMP6s and hM4di, coronal sections were blocked in a solution con-
sisting of 10% donkey serum, 1% BSA and 0.3% Triton X-100 in 1× PBS 
for 1 h at room temperature, followed by overnight incubation at 4 °C 
with primary antibodies (1:1,000 chicken anti-GFP, Aves Labs (GCaMP); 
1:1,000 rabbit anti-mCherry, Abcam (hM4Di)) diluted in the blocking 
solution. After washing, sections were incubated in secondary antibod-
ies (1:200 goat anti-chicken Alexa Fluor 488, Jackson ImmunoResearch 
(GcAMP); 1:200 goat anti-rabbit, Alexa Fluor 594, Thermo Fisher Sci-
entific (hM4Di)) for 1.5 h at room temperature. For all experiments, 
we verified the expression of the injection construct (axon-GCaMP6s, 
ChrimsonR or hM4di) in the desired brain region.

Identifying monosynaptic inputs to M1 L2/3 neurons
We analysed data from a previous study16, representing rabies-virus- 
based monosynaptic retrograde labelling of direct inputs to M1 L2/3 
excitatory neurons. We examined only data using Cux2-Cre and Sepw1- 
Cre lines, which represent putative excitatory M1 L2/3 neurons.

Statistics
For comparing decoding analyses, we used t-tests, with Holm–Bonfer-
roni multiple-comparison correction where appropriate. Otherwise, 
non-parametric tests were used to avoid assumptions about data 

distributions. No statistical methods were used to predetermine sam-
ple size, but our sample sizes are similar to those reported in previous 
publications1,45.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Extended Data Fig. 1 | Further analysis for rewarded movements. a, Left, the 
median duration of all rewarded movements across individual sessions. Right, 
median variability (s.d.) in rewarded movement duration across individual 
sessions. n = 36 for both beginner and expert sessions. b, Representative 
examples of rewarded movements. Individual (blue) and the average rewarded 
movements (black) during beginner (left) and expert (right) sessions.



Extended Data Fig. 2 | Motor learning induces reproducible patterns  
of M1 L2/3 activity. a, Top, max-intensity projection of in vivo two-photon 
fluorescence images of GCaMP6s in M1 L2/3 of CaMKII-tTA::tetO-GCaMP6s:: 
Vglut2-Cre triple transgenic mice, expressing GCaMP6s in cortical excitatory 
neurons. The same FOV imaged on the first (beginner) and last (expert) training 
days. Bottom, representative estimated spike traces from the same neurons.  
b, Activity from one example FOV. Top, population average of all (black), 
movement-active (blue), and movement-suppressed (green) neurons. Middle, 
representative individual neurons. Bottom, lever position. Pink highlights 
represent movement periods. c, Trial-averaged activity of movement-active 
(top, sorted by onset timing), movement-suppressed (middle), and 
indiscriminately active (bottom) neurons during beginner (left) and expert 
(right) sessions, aligned to the onset of rewarded movements (dashed lines). 
Each row represents one neuron. During beginner sessions, 30.7% of the 
neurons are movement-active (1132 neurons), 14.2% are movementsuppressed 
(525 neurons), and 55.1% are indiscriminately active (2036 neurons). During 
expert sessions, 35.1% of the neurons are movement-active (1035 neurons), 
17.1% are movement-suppressed (504 neurons), and 47.8% are indiscriminately 
active (1407 neurons). d, Average population activity during beginner (left) and 
expert (right) sessions. Mean ± s.e.m. e, Trial-by-trial correlation of population 
activity patterns during rewarded movements increased over training (p < 0.01, 
rank-sum test). Box plot elements: centre line, median; box limits, upper and 
lower quartiles; whiskers, 1.5× interquartile range; points, outliers. For b,c,d,g–i, 
n = 7 mice; 14 beginner sessions, 13 expert sessions. All rank-sum tests are 
two-sided.
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Extended Data Fig. 3 | Monosynaptic inputs to M1 L2/3 neurons. Summary 
of rabies-virus-based monosynaptic retrograde labelling of direct inputs  
to M1 L2/3 excitatory neurons. Cux2 and Sepw1 Cre lines were used to limit the 
starter cells to L2/3 excitatory neurons. n = 2 per Cre line. Data from a previous 
study16. MOp, primary motor cortex; SSp, primary somatosensory cortex;  

SSs, secondary somatosensory cortex; VAL, ventral anterior-lateral complex  
of the thalamus; VM, ventral medial nucleus of the thalamus; VPL, ventral 
posterolateral nucleus of the thalamus; VPM, ventral posteromedial nucleus  
of the thalamus; PO, posterior complex of the thalamus.



Extended Data Fig. 4 | Projection-specific functional imaging. Related to 
Fig. 1. a, Top, schematic of injections to express axon-GCaMP6s in different 
input areas and imaging their axons innervating M1. Bottom, max-intensity 
projection of in vivo two-photon fluorescence images of axon-GCaMP6s 
expressed in the axons in M1 from each input source. b, Top, example activity 

from corresponding FOVs in a., showing the population average of all (black), 
movement-active (blue), and movement-suppressed (green) axonal boutons. 
Middle: representative individual axonal boutons. Bottom, lever position.  
Pink highlights represent movement periods.
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Extended Data Fig. 5 | Optogenetic stimulation of thalamic axons in M1.  
a, Schematic for experiments to validate optogenetic stimulation of thalamic 
inputs innervating M1 by expressing ChrimsonR and GCaMP6f in thalamic 

neurons and exciting and imaging their axons in M1. b, Three example axonal 
segments during optogenetic stimulation showing a reliable excitation after 
the stimulation of thalamic inputs (orange vertical bars).



Extended Data Fig. 6 | Representative neurons during optogenetic 
stimulation. Responses of example M1 L2/3 neurons from a single FOV  
to the optogenetic stimulation of thalamic inputs. Orange vertical bars 
represent stimulation periods.
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Extended Data Fig. 7 | Optogenetic mapping with motor-thalamus 
inactivation. a, Experimental strategy. ChrimsonR is expressed in thalamic 
neurons, and imaging and optogenetic stimulation are done in M1 before and 
after muscimol injection into the motor thalamus. b, Example response to 
thalamic axon stimulation from two Th-excited neurons before (left) and  
after (right) muscimol injection into the motor thalamus. c, Total number of 
Th-excited neurons per FOV before (left) and after (right) muscimol injection 
into the motor thalamus. Each line is one FOV (n = 4 FOVs from 2 mice).



Extended Data Fig. 8 | Examples of movement-active neurons. The activity of example Th-excited (top) and Th-non-responsive (bottom) movement-active 
neurons aligned to the onset of rewarded movements (dashed lines). Left, mean ± s.e.m. Right, heat maps of individual trials.
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Extended Data Fig. 9 | Functional connectivity probability. a, Functional 
connection probability as a function of distance between neurons for Th-excited 
(blue) and Th-non-responsive (pink) neurons during beginner (left) and expert 
(right) sessions. b, Correlation-based functional connectivity measured while 
excluding all movement periods. The results are similar to the functional 
connectivity measured using all time periods. Left, in beginners, Th-excited 
neurons have higher connection probability with movement-active neurons 

than Th-non-responsive neurons with movement-active neurons (p < 0.001, 
signed-rank test). Connection probabilities with movementsuppressed neurons 
are similar between Th-excited and Th-non-responsive neurons (p = 0.1260). 
Right, in experts, Th-excited neurons have a higher connection probability with 
movement-active neurons and a lower connection probability with movement- 
suppressed neurons than Th-non-responsive neurons (p < 0.001 and 0.05, 
signed-rank test). All tests are two-sided.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | S1-excited, cM1-excited and M2-excited M1 L2/3 
neurons do not preferentially encode the learned movement. a, Top, 
experimental strategy. ChrimsonR is expressed in S1, cM1, and M2 neurons, and 
imaging and optogenetic stimulation are performed in M1. Bottom, coronal 
sections showing the expression of ChrimsonR-tdTomato neurons (red) and 
GCaMP6s in cortical neurons (green). b, Fractions of excited, rebound, and 
non-responsive neurons by stimulation of the 4 inputs during the opto-mapping 
session 0 (motor thalamus, n = 1494 neurons from 7 mice; S1, n = 754 neurons 
from 5 mice; cM1, n = 1288 neurons from 5 mice; M2, n = 1792 neurons from  
4 mice). c, Left, the trial-average activity of all S1-excited and S1-non-responsive 

(n = 856 neurons from 5 mice) neurons from beginner sessions aligned to 
rewarded movement onset (dashed line). Mean ± s.e.m. Middle, fractions of 
movement-active, movement-suppressed, and indiscriminately active neurons 
within the S1-excited population in beginners. Right, same as the left panel but 
for movement-active neurons. d, Same as c but for experts (n = 760 neurons 
from 5 mice). e, Same as c but for cM1-excited neurons (n = 1572 neurons from  
5 mice). f, Same as d but for cM1-excited neurons (n = 1203 neurons from 5 mice). 
g, Same as c but for M2-excited neurons (n = 331 neurons from one mouse).  
h, Same as d but for M2-excited neurons (n = 493 neurons from one mouse).



Extended Data Fig. 11 | Further analysis related to ShaReD. a, Weights (with 
unit L2-norm) for the second ShaReD behavioural component for movement-
active Th-excited neurons (blue) or movement-active Th-non-responsive 
neurons (pink). Shaded areas show 95% confidence intervals of the mean  
over cross-validation folds. For Th-non-responsive neurons, the weights are 
computed 50 times for different samplings of neurons to match the number  
of Th-excited neurons and averaged over samples. b, Cross-validated measure 
of the root mean square correlation (between projected behaviour and 
projected neural activity) for the first 8 ShaReD components for movement-
active Th-excited neurons (blue) and movement-active Th-non-responsive 

neurons (pink). Mean with 95% confidence intervals over cross-validation folds. 
c, Cross-validated decoding accuracy for the first behavioural component  
for movement-active Th-excited neurons when the behavioural projection 
weights are time-shifted. The decoding accuracy is the highest around zero 
time-shift (lag), i.e., when neural activity precedes movements as in Fig. 3b. 
Shaded areas show 95% confidence intervals of the mean over cross-validation 
folds. d, Convergence of the ShaReD objective function across 1,000 gradient 
descent iterations, shown for both first (solid lines) and second (dotted lines) 
components of Th-excited (blue) and Th-non-responsive (pink) neurons. Shaded 
areas show 95% confidence intervals of the mean over cross-validation folds.
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Extended Data Fig. 12 | Activity onset of different Th-excited populations. 
a,b, Histograms of the activity onset of individual movement-active neurons 
relative to the onset of rewarded movements during beginner (a) and expert (b) 
sessions. Vertical grey lines indicate medians.
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