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Most social species self-organize into dominance hierarchies'? which decreases
aggressionand conserves energy>*, but it is not clear how individuals know their
social rank. We have only begun to learn how the brain represents social rank®® and
guides behaviour on the basis of this representation. The medial prefrontal cortex
(mPFC) isinvolved in social dominance in rodents” and humans'®. Yet, precisely how
the mPFC encodes relative social rank and which circuits mediate this computationis
not known. We developed a social competition assay in which mice compete for
rewards, as well as acomputer vision tool (AlphaTracker) to track multiple, unmarked
animals. A hidden Markov model combined with generalized linear models was able
to decode social competition behaviour from mPFC ensemble activity. Population
dynamicsin the mPFC predicted social rank and competitive success. Finally, we
demonstrate that mPFC cells that project to the lateral hypothalamus promote
dominance behaviour during reward competition. Thus, wereveal a
cortico-hypothalamic circuit by which the mPFC exerts top-down modulation of

social dominance.

The mPFCis bestknown foritsrolein higher cognitive functions, with
theoretical emphasis on mPFCintegration of sensory and limbic infor-
mation to flexibly guide behaviour on the basis of task rules'. Notably,
mPFC circuitry has also been implicated in social cognition, social
memory and dominance™"** We hypothesized that mPFC neurons
encodesocial rank and are part of top-down circuits to guide behaviour
on the basis of social rank®.

We designed a reward competition assay wherein mice that were
linearly ranked among their cage mates competed for aliquid reward
delivered during atone. This task design optimized rigorous statistical
examination of ethologically relevant behaviours in a trial structure
(Fig.1a). We considered relative social ranks within each competing
pair, enabling a within-subject comparison for intermediate-ranked
animals. After individually learning that the tone predicted reward
delivery (Extended Data Fig. 1a), mice competed for rewards with a
cage mate. Dominant mice, as defined by the tube test®, obtained more
rewards, spent more time at the reward port and were more successful
at displacing competitors (Fig. 1b, cand Extended Data Fig. 1).

To automatically track the behaviour of multiple, unmarked mice,
we developed AlphaTracker, adeep-learning computer visiontool that
combines two neural networks, one to create abounding box for each

subject, and another for pose estimation to detect multiple, unmarked
animals (Fig. 1d, e). AlphaTracker also applies another algorithm to
track animalidentity across frames considering animal positions from
the previous frame (Fig. 1d; see Supplementary Methods). The perfor-
mance of AlphaTracker surpasses humanaccuracy when tracking two or
four mice (Extended DataFig. 2) and includes unsupervised clustering
of high-dimensional tracking output data to aid in the identification
of novel behavioural motifs (Extended DataFig. 3 and Supplementary
Video1).

mPFC neurons encode competition behaviour

Toinvestigate whether mPFC neurons encode competition behaviours,
we used wireless head-mounted devices to record cellular-resolution
activity during the social competition (Fig. 1f, g and Extended Data
Figs.4 and 5a-g). After AlphaTracker facilitated identification of nine
different behavioural labels (Fig. 1f and Extended Data Fig. 5h, i), we
investigated whether the mPFC predicted specific behavioural out-
puts. Given the ability of mPFC neurons to be selective for different
stimulus features under different contexts'®, we posited that mPFC
neural activity could be dynamic, and that representations may be

'Salk Institute for Biological Studies, La Jolla, CA, USA. Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA. *Department of Computer
Science, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China. “The Picower Institute for Learning and Memory, Department of Brain
and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. °Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. *Neurobiology Section, Center for
Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA, USA. "Howard Hughes Medical Institute, Salk Institute for Biological Studies,
La Jolla, CA, USA. ®Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. *Department of Psychology, University of Texas at Austin,
Austin, TX, USA. ®McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. "Shanghai Artificial
Intelligence Laboratory, Shanghai, China. ?These authors contributed equally: Nancy Padilla-Coreano, Kanha Batra. ®e-mail: lucewu@sijtu.edu.cn; tye@salk.edu

Nature | Vol 603 | 24 March 2022 | 667


https://doi.org/10.1038/s41586-022-04507-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-04507-5&domain=pdf
mailto:lucewu@sjtu.edu.cn
mailto:tye@salk.edu

Article

a Individual Reward b
Tube testing ini iti Relative rank
. - training competition 107 5 Dom § 100
T : £g |75 2
by e gse fg
“h Dom Sub ! Es ki
- = Q
% e 3 2 g
s s 0
4 8 121620 O 1234
Trial Absolute rank
c d e
100 * © 100 * 30 YOLO-based 100 L 100
5% § = object detection .9 = — 5 .t
= L — P —
S S 0% 3 ; s _|”
g iy R
55 ig gg saPEbaseg 8 | [0rames £
8o £ o feature detection &~ |. 400 frames =
€ g G 3 g |:oooframes 5 | ° ﬁ'phanlathelll'_
3 & o Identity tracking é 0 + Human labelling | uman labelling
Dom Sub Dom Sub  Dom Sub  using IOU Nose Left Right Tail 200 400 600
ear ear base Number of frames
f — - TClose T Far - -
Resist f ‘ Self in port, N
VA S O TSl
o us F <
- 4 ’ Other in port | Other in port\ A _APRN
ig1
£, [
9 h 2o -
MicroSD card -
R en \ 2 0 5 10
Time from tone onset (s)
Batte iti
2 2 S x
Amplification 7 Ch. a2 Y Y 27 P
Digitization .- i Emission Emission @
chip i GLM for z,_, GLMforz [ & oy [T .
3 v M E
witii || i 3°
e NPT
L) 2 E SN
"
RS

Fig.1|Novelsocial dominance assay and deep learning tool for tracking
multipleanimals. a, Reward competition behavioural paradigm. b, Mice with
higher relative ranks (dominant (Dom)) collected more rewards than relative
subordinates (Sub) when competing in dyads (n =12 dyads; sign rank test on
total rewards, P=0.008). Left, cumulative rewards across trials. Right,
percentage of competitions won by absolute rank (n = 6 competitions per rank).
¢, Portoccupation, pushing success (pushing that resulted in displacement of
competitor) and time displaced from port differed by relative rank (n =12 dyads;
signrank test, occupation P=0.04; pushing success P=0.02; displaced
P=0.016).d, Architecture of AlphaTracker, which combines two convolutional
neural networks (YOLO, you only look once; SAPE, single-animal pose
estimation, whichisasqueeze-and-excitation network) and intersection over
union (I0U) for identity tracking. e, AlphaTracker precision for tracking two
unmarked, near-identical mice is higher than human precision separated by
body parts (left) or total (right; average precisionacrossbody parts;n=3
subsampled replicates).f, Social competition behaviourallabels used for
decoder models. g, Wireless device torecord neural activity from the mPFC
(n=965trials from 32 sessions from13 mice). Image modified from
SpikeGadgets. h, Architecture of the HMM-GLM model to describe the
relationship between neuralactivity and behavioural states. Hidden states are
shownonthegreybackground. Ch, channel; x, mPFC activity; y, behaviour label;
z,hiddenstate. i, Top, example trial with real behavioural labels and prediction
for HMM-GLM six-state model (colours fromf). Bottom, performance across
models based onareaunder thereceiver operating curve (AUC; n=9
behaviours; Kruskal-Wallistest P= 6.7 x 10~%; model versus chance sign test
P=0.004 for six-state HMM-GLM, 9 GLMs and GLM; Wilcoxon rank sum HMM-
GLMversus GLMP=4x10"°, HMM-GLM versus 9 GLMs P=4 x10°, GLM versus 9
GLMs P=0.54).FT, frequency of behaviours table. Data are presented as mean
values £s.e.m.*P<0.05,**P<0.01,***P<0.001.

hierarchical, and influenced by internal hidden states. We turned to an
unsupervised method to identify hidden states by combining a hidden
Markov model (HMM) with generalized linear models (GLMs)"*® and
adapted it to use mPFC neural activity to predict behaviour. In our
HMM-GLM model, one set of multinomial GLMs predicts the transition
probabilities between hidden states, and each hidden state is paired
with another multinomial GLM that describes the relationship between
neural activity and behaviour (Fig. 1h).

An HMM-GLM model with six hidden states decoded behavioural
labels from neural activity with superior cross-validated performance
comparedwiththatofstaticmodels (Fig.1i, Extended DataFig. 5jand Sup-
plementary Video 2). The model performed equally well when training
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for onerelative rank and testing on the other (Extended Data Fig. 5k, 1),
suggesting that mPFC encoding of social competition behaviour is
generalizable across relative ranks. Given this finding, we then con-
sidered whether thereisastable and simple encoding of rankin mPFC
neural representations, and whether these variables could themselves
predict behaviour.

mPFCreflectsrank and winning

We next investigated whether mPFC neural activity could be used to
decoderelative social rank, and whether the neural representation of
relative social rankis triggered by discrete task-relevant events (cued
competition trials or port entries) or stably represented throughout
the task. To visualize population activity, we plotted the population
activity vector for task-relevant events (Extended Data Fig. 6a and
Supplementary Video 3) in a lower-dimensional firing-rate space
using principal component analysis. Neural trajectories during the cue
and port entries of the self or other (competitor) for win or lose trials
occupied segregated neural activity subspaces even before the cue
onset, suggesting separable brain states preceding each trial (Fig. 2a
and Extended Data Fig. 6), consistent with primate studies®. Relative
subordinates had longer neural trajectories compared with those
of relative dominants (Fig. 2b and Extended Data Fig. 6b-f). Indeed,
our analyses revealed larger firing rate variance, but not faster firing
rate changes, for relative subordinate mice (Fig. 2b and Extended
Data Fig. 6¢). We ruled out the possible contributions of potential
confounds (for example, subject location, distance to reward port
and identity) to the differences in neural trajectories across ranks
(Extended Data Fig. 7).

mPFC predicts future wins

To directly test the hypothesis that the mPFC encodes relative rank
and competitive success at the population level, we trained a support
vector machine (SVM) classifier to decode these binary states from
single-trial data (Extended Data Fig. 8a). An SVM was able to decode
both competitive success and relative rank—even before cue onset
(Fig. 2c and Extended Data Fig. 8b-e), consistent with the notion that
state differences in the mPFC correlate with future winning’. Social
rank was more accurately decoded than competition outcome from
mPFC neural activity (Fig. 2c), perhaps reflecting the relative stability
of rank versus competitive success. Although our data are consistent
with the idea of a ‘winning effect’ or a ‘losing streak’”?°, the decoding
accuracy across the trial was consistently above chance. PFC neural
activity could predict whether the next trial would be awin or aloss
~30 s before the competition trial began, providing cellular evidence
supporting the psychological concept of ‘awinning mindset’.
Notably, we can decode the absolute social rank of individuals from
mPFC activity, even when they are alone (Extended Data Fig. 8f-h).
To visualize differences between tone responses to the reward while
alone versus in competition, we plotted the neural trajectories across
tasksinthe same subspace of the principal component analysis (Fig. 2d).
Subordinate mice (rank 4) had larger changes induced by competi-
tion with longer tone trajectory lengths during competition (Fig. 2e).
By contrast, dominants (rank 1) showed the smallest differences
between the alone and competition state. To confirm that population
dynamics differed betweenreceiving the reward alone versus winning,
werecorded the same neurons while animals performed the reward task
aloneversusin competitionand found thatan SVM could decode trial
type from mPFC population dynamics (Extended Data Fig. 8i, j). Nota-
bly, relative rank could be predicted in intermediate-ranking animals
(Extended DataFig 8e). However, we cannot rule out the possibility that
therepresentation may reflect social identity and the associated social
history with that individual rather than relative rank alone; indeed, it
is yet unclear whether the brain is capable of separably representing
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Fig.2|Socialrankand competitivesuccessis decoded by mPFCpopulation
dynamics. a, Neural trajectories of mPFC firing rate differ by relative rank during the
tone presentationforwinandlose trialsinalower-dimensional common principal
component (PC) subspace (trajectories include atotal of 20 mice; 27 sessions;
dominants, n=>507 cells; subordinates,n=482 cells).a.u.,arbitrary units. b, Neural
trajectorylengths for win (top; two-way repeated measures analysis of variance
(ANOVA) effects of relative rank £, ,,=1,090, P=2 x 10 and interaction F, ,s=1,660,
P=3x10")andlose (bottom; two-way repeated measures ANOVA effect of relative
rank F;,s=883,P=9 x10*andinteraction F, ,;=2,995,P=9 x10™) trials. Firing rate
varianceis higher for relative subordinates (number of neuronsindicatedin plots;
top, wintrials: Kolmogorov-Smirnov test P=0.01, Wilcoxonranksum P=0.19;
bottom, lose trials: Kolmogorov-Smirnovtest P=5x 107, Wilcoxon rank sum
P=2x107).Lightblueand pinkindicate overlappingbars. ¢, SVM performanceis
higherthan chance for decoding competitive success (top) and relative rank
(bottom) (grey:shuffled data performance; Wilcoxon rank sum: competitive
successP=2x107* relativerank P=2 x 10™*; competitive success versusrelative rank
P=2x10"*).CV, cross-validation.d, Neural trajectories of mPFC population firing
rateby absolute rank (dominant =rank1;intermediates (Int) = ranks2and 3;
subordinate =rank4) when performing the reward task alone versusin

competition (Comp)inalower-dimensional common PCsubspace (neuronsinalone
session:dominant =111, intermediate = 259, subordinate = 140; competition:
dominant =309, intermediate =359, subordinate =330).e, Left, trajectory during
thetoneis higher for subordinates during competition (two-way ANOVA main effect
ofrankF, 33=30.4,P=1x107% task F; ;3=26.1, P=9 x 10 °and interaction F, ;3=70.1,
P=1x10"8).Right, distance betweenalone and competition tone trajectories
increases withrank (nreflectsall possible combinations of alone versus competition
trajectories; one-way ANOVA main effect of rank F, 5, = 536, P=3 x107®). Post-hoc
comparisonsare Bonferroni-corrected t-tests, *P< 0.05, ***P< 0.001. Two-way
ANOVAswere for rank and event (baseline versus event) or rank and trial type and
samplesizeindicatedinplots.Dataare presentedasmean +s.e.m.

rank and identity. Together, these data demonstrate that the mPFC has
adynamic, but consistent, representation of social rank and competi-
tive success despite having multiple, rank-independent hidden states
for encoding behaviour during social competition.

Rank-dependent mPFC representations

Given that the mPFC encodes social rank and competitive suc-
cess, we posited that specific ensembles of cells might encode
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Fig.3|Relative dominants have more reward-seeking-behaviour cells
whereas subordinates have larger responses to competitor behaviour.

a, Left, heatmaps for mPFC firing rate responses to task-relevant events during
thereward competition. Coloursindicate clusters obtained by hierarchical
clustering. Cellsincluded in heatmap have aZscore greater than2 or less than
-1(dominantn =326; subordinate n=305); clusters with anon-responsive
population average are labelled grey. Right, difference betweenrelative
dominantand subordinate cells (percentage enrichment) across functional
clusters. Black horizontal linesrepresent the cue. b, Left, response magnitude
for mPFC cells during win trials differed across relative ranks (D, dominant; S,
subordinate; Fisher’s exact test, total responsive cells per group P=0.30;
Wilcoxon rank sum across groups: excited P=0.01; inhibited P=0.06). Right,
number of responsive cells and response magnitude for lose trials did not differ
by relative rank (Fisher’s exact test, total responsive per group P=0.17;
Wilcoxon rank sum: excited P=0.62; inhibited P= 0.28). c, Left, number of
mPFC cells responsive to selftone port entry was higher for relative dominants
(Fisher’s exact test, total responsive cells per group P=0.0003; Wilcoxon rank
sum: excitation P=0.28 and inhibition P=0.99). Right, there was no difference
innumber of cellsresponsive to other tone port entry whereas the excitation
magnitude was higher for relative subordinates (Fisher’s exact test, total
responsive cells per group P= 0.84; Wilcoxon rank sum: excitation P=0.006,
inhibition P=0.11).d, Left, relative dominants had more mPFC cells responsive
toselfportentries during theinter-trialinterval (ITI) whereas relative
subordinates had larger excitation magnitude (Fisher’s exact test, P=9.8 x107%;
Wilcoxon rank sum: excitation P=0.006 and inhibition P=0.28). Right, relative
dominants had more mPFC cellsresponsive to other portentries during the
inter-trialinterval whereas subordinates had larger magnitudes (Fisher’s exact
test, P=0.00019; Wilcoxon rank sum: excitation P= 0.015 and inhibition
P=0.04).Recordings were collected from 20 mice; sample indicated in plotsis
cells. Dataare presented as mean +s.e.m.*P<0.05,**P<0.01, **P<0.001.

distinct task-relevant events inarank-dependent manner to provide a
distributed representation of social rank and competitive success.
Toinvestigate whether social rankis represented within the mPFC at the
single-celllevel, we analysed the firing rate of individual mPFC neurons
duringdiscrete reward competition events. mPFC single units showed
diverseresponses to the tone for win-or-lose trialsand to port entries
performed by self or the other (that is, the competitor) that differed
by social rank (Fig. 3a and Extended Data Fig. 9a). We quantified the
ensemble sizes and magnitude of responses to the task-relevant events
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P=0.015).Right, firing rate for projector populations during tones for the
reward task alone (alone data:mPFC-BLA n=5neurons, mPFC-LHn =13
neurons, Wilcoxon ranksum P=0.50; alone versus competition meanZscore
duringtone; mPFC-LH P=0.0189, mPFC-BLA P=0.43). Thicker lines represent
the mean. ¢, Left, during reward competition light-off or light-on sessionsin
whichlight was delivered in epochs (5-minlight epoch of four 5-mslight pulses
at100 Hzevery 200 ms). Right, cumulative rewards obtained by ChR2 micein
thelight-off versus light-on session (n=9 mice). Dataare presented as mean
values +s.e.m.d, mPFC-LH cell stimulationincreased the number of trials won
(left; ChR2n=9,eYFP n="7; two-way repeated measures ANOVA interaction of
virusandlight F, ;,=5.22, P=0.03; Bonferroni-corrected t-test ChR2 P=0.01),
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displaced (right; ChR2 n=9 paired t-test, P= 0.005; eYFP n =7 paired t-test,
P=0.28).*P<0.05,**P<0.01.

while animals were alone versus in social competition (Fig. 3b—d and
Extended Data Fig. 9b-d). During competition, but not while alone,
relative dominants had more cells that were responsive to self port
entries whereas subordinates had larger responses to win trials and
portentries of the other (Fig. 3b—d and Extended Data Fig. 9b-d). Fur-
thermore, the mPFC neurons of relative subordinates exhibited larger
phasicresponsesinresponseto task events, consistent with the longer
neural trajectories observed (Fig 2).

mPFC-LH neurons modulate dominance

Given the functional diversity of neural responses from individual
mPFC neurons, we next investigated how information was routed
out of the mPFC during social competition to downstream subcorti-
cal targets.

The lateral hypothalamus (LH) comprises a diversity of cell types
and has been shown to drive hypersocial behaviour and social inves-
tigation®, and to modulate social defensive behaviours??*, Further,
the LH plays a critical role in energy balance homeostasis**—dem-
onstrating the capacity to serve as a homeostatic control centre®.
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On the basis of the conceptual framework for social homeostasis,
after socialinformationis detected and evaluated in arank-dependent
manner, it would be sent to a control centre for comparisonto asocial
homeostatic set point'%,

Wealsoinvestigated the mPFC projection to the basolateralamygdala
(BLA) becauserecent evidence suggests that BLA firing rates correlate
with the social rank of conspecific faces in non-human primates® and
the BLAisanimportant point of convergence for socially derived infor-
mation”® to be associated with emotional valence?>°,

To identify mPFC cells that project monosynaptically to the LH or
BLA, we used anintersectional viral strategy to express ChrimsonR in
each projection, validated with ex vivo recordings (Fig. 4a and Extended
DataFig.10a, b). We then wirelessly recorded mPFC neural activity
while animals were alone or competing and delivered red light pulses
at the end of the competition session to photoidentify mPFC-LH or
mPFC-BLA neurons. We found that mPFC-LH neurons had stronger
excitationto reward delivery than mPFC-BLA neurons during reward
competition, but not when performing the task alone (Fig. 4b and
Extended Data Fig.10c).

Given the selective unmasking of a robust mPFC-LH response
to the reward-predictive tone only in the context of social com-
petition (Fig. 4b), we speculated that mPFC-LH neurons could
modulate reward-related social competition. To directly test the
hypothesis that mPFC-LH neurons have a causal relationship with
social-dominance-related behaviour, we expressed either channel-
rhodopsin 2 (ChR2) or enhanced yellow fluorescent protein (eYFP) in
mPFC-LH neurons and implanted an optic fibre in the mPFC (Fig. 4c
and Extended Data Fig.10d). ChR2-expressing mice won more rewards
during the entire competition, had greater reward port occupationand
spent lesstime being displaced when they received optical stimulation
(Fig.4d). Stimulating mPFC-LH neurons did not affect reward-seeking
behaviour while performing the reward competition assay alone, feed-
inginthe home cage, anxiety, sociability, place preference or general
effort (Extended Data Fig. 10e-k).

Conclusion

Together, these data demonstrate that the mPFC neural activity pre-
dicts future competitive success, can be decoded to predict both
relative and absolute social rank, and uses cortico-hypothalamic
circuits to guide social competition behaviour. Development of an
ethologically relevant social competition task that incorporates a
trial structure allowed us to reveal how related variables updated on
different timescales might be parsed and represented separately.
Indeed, social rank and competitive success representations occupied
orthogonal activity spaces (Fig. 2a), which we speculate is an adap-
tive strategy that the PFC can use to parse related variables updated
ondifferent timescales.

Importantly, the way that mPFC ensembles encode behaviour is
dynamic, which suggests a model in which internal states influence
how the mPFC modulates behaviour, consistent with arole in flexibly
guiding behaviour. Our data demonstrate that cortico-hypothalamic
circuits carry social rank information that could potentially modulate
the many different neuropeptide- and hormone-expressing subpopula-
tionsin the hypothalamus to achieve behavioural modulation. Indeed,
we speculate that the mPFC serves as a rank identification node that
works in concert with the anterior cingulate cortex to function as a
‘detector’ to extract signals from social agents and that downstream
projections to the hypothalamus may function as the detector node
output to a social homeostatic ‘control centre’, within a purported
social homeostatic circuit®.

This study not only unveils anumber of technological advances that
together provide a platform for the investigation of social hierarchies,
butalso begins to integrate pieces of evidence that together support
the notion that there is a neural circuit for social homeostasis.
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Extended DataFig. 3| AlphaTracker unsupervised clustering results.

a, Diagram depicting features used for AlphaTracker’s unsupervised clustering
ofthetracking datapoints. The featuresinclude head length, body length,
body-head angle, displacement of the nose, distance between mice, angle
betweenmice. b, Example frames from clips belonging to a specific cluster
(cluster ID indicated with the color outlinein ¢). ¢, Dendrogram and UMAP plot
showingallvideo clips color coded by cluster ID for social behavior clustering.
The mean cluster outputs areshownin (e) and features used are shownin

(g).d, Dendrogram and UMAP plot showing all video clips color coded by
cluster ID for individual behavior clustering. The mean cluster outputs for this

clusteringareshownin (f) and features used are shownin (h). e, Average
normalized skeleton for nose, ears and tail base across clusters for the social
behavior clustering across 500 ms of video clip time. Red arrow indicates self
skeletonand greenindicates the other skeleton. Eacharrow represents 33.3 ms
of data (1frame). f, Average normalized skeleton for nose, ears and tail base
across clusters for the individual behavior clustering across 500 ms of video
cliptime.Eacharrowrepresents 33.3 ms of data (1frame). Legend inbottom
appliesto panels e-f. g, Heatmap of normalized values for the sel/fand other
features used for social behavior clustering. h, Heatmap of normalized values
for the selffeatures used for individual behavior clustering.
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Extended DataFig. 4 |Histological validation ofelectrode placements. a, Representative images showing electrode track and lesions of mPFC electrode wires.
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Extended DataFig. 5|Behaviorincompetition withloggerand HMM-GLM
model controls. a, Left, diagram of wireless electrophysiology recording
device used for mPFC recordings. Image modified from SpikeGadgets’
MiniLogger productillustration. Middle, latency to collect reward over four
days of training (n =16 mice). Right, latency to collect reward while performing
reward task alone was not affected by wearing the logger (n =12 mice; paired
t-test, p = 0.83).b, Percent competitions won by absolute rank is highest for
rank1miceindatasetused for mPFCrecordings (number of competitions per
rankl1n=12;rank2n=12;rank3 n=15;rank4 n=14).c, Left, number of rewards
obtained by relative dominants (dom) and subordinates (sub) during the
reward competitions between animals wearing loggers (n = 22 mice per group;
paired t-test, p = 0.86). Right, % body weight difference between competitors
significantly correlates with rewards won (subn =19 domn =20, Pearson’s
correlation, *p = 0.01). For correlation only mice with same day weight
measurements were used. d, Subordinates had longer latencies to pick up the
reward during win trials (center line, median; box limits, upper and lower
quartiles; whiskers, 1.5x interquartile range; points, outliers). Left, latency per
group. Right, histogram of the distribution of latencies across all trials (dom
trialsn=326,subtrialsn =358, Wilcoxon rank-sum, p = 0.012; Two-sample
Kolmogorov-Smirnov test, dom vs sub trials p = 0.015; One way RM-ANOVA
Fu24=2.06,p=0.002).e,Percent port occupancy during tone acrossrelative

rank (n=31sessions, paired t-test p=.90). f, Relative dominants were more
successful displacing subordinates from the reward port throughout the
competition (left; n =32 sessions, paired t-test, p=0.002) and during the tone
time (right; n = 31sessions, paired t-test, p = 0.005). g, Total time being
displaced from reward port by relative rank in dataset used for mPFC
recordings (n =31sessions; paired t-test p = 0.15). h, Percent time (normalized
by total time per behavior) for 9 behaviors analyzed for win and lose trials
separated by relative social rank.i, Percent time difference betweenrelative
dominant and subordinates for behavioral transitions during win trials (left) vs
losetrials (right).j, Left, model selection for HMM-GLM state number using
10-fold cross-validation method resultsina 6 state model being optimal. Error
barsindicate standard error across the 10 cross-validations. Right, HMM-GLM
6 state model performance predicts behavioral label regardless of training
method utilized (AUC n =9, one per each behavior label; Sign test of model
performance vs chance p = 0.004 for both methods). k, HMM-GLM 6 state
model predicted behavioral label regardless of which dataset was used for
training or testing (n = 9 behavior labels using 482 trials for dom vs 478 trials for
sub; Signtest performance vs 0.5 (chance) p = 0.004 for all tests). 1, Distribution
of percent time spentin each hidden state by relative rank group (n =10
cross-validations using 482 trials for dom vs 478 trials for sub from 14 mice).
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Extended DataFig. 6 | Additional datafor mPFC population dynamics
during social competition. a, Dataarrangementacross all animals
(m1=mousel, m2=mouse2)forthe dimensionality reductiontoacommon
subspace for the six task-relevant events. Neural trajectories were created for
dominantand subordinate data using mean firingrate per eventand the
principal componentanalysis coefficients. b, Neural trajectory lengths (using
principal components that captured 90% of variance) for win and losetrials are
longer for relative subordinates inintermediate (ranks 2 or 3) mice (nindicated
onplots; win2-way RM-ANOVA main effects of relative rank F; ;5) =165,
p=2x10"%; lose2-way RM-ANOVA effect of relative rank F; ;4 = 262, p = 6x107).
¢, Firingraterate of change is higher for relative dominants only in win trials
(number of neuronsindicatedin plots, inset plot has average across groups;
wintrials rate of change: Kolmogorov-Smirnov (KS) test p = 0.009, Wilcoxon
ranksum p = 0.01; losetrials rate of change: KS test p = 0.40, Wilcoxon rank sum
p=0.19).d, Neural trajectories for win and lose trials plotted in the first
Principal Component (PC) for win and the orthogonal lose subspace show little
overlap. Topright, inset of dominant neural trajectories. Bottomright,
alignment of win and lose trajectories was significantly lower for dominant
mice (n=13 per group; Wilcoxon rank-sum, p =1.5x107). e, Left, neural
trajectories of mPFC population firing rate differ by relative rank for port
entries that occur during the tone period inalower dimensional common

principal component (PC) sub-space (trajectories are the average across leave
oneoutiterationsleaving out one mouse atatime, total neurons recorded
fromdominants: n =507 and subordinates: n =490 units from 20 mice). Self
entry events arealigned to portentries of the subject mouse while other entry
eventsare aligned to the competitor’s portentries. Right, trajectory lengths
(using PCs that captured 90% of variance) for selfentry (top) and other entry
(bottom) during the tone are longer for relative subordinates (selfentry 2-way
RM-ANOVA effect of relative rank F ,5)= 452, p = 5x10"*and interaction of
relative rank and event F 55, = 5,950, p = 1x107; other entry 2-way ANOVA effect
of relative rank F,,5,= 728, p = 3x10 “and interaction of relative rank and event
Fuas =90, p=5x107).f, Left, Neural trajectories of mPFC population firing rate
for portentriesthat occur duringinter-trialinterval (ITI) projected into the
firsttwo principal components of the common behavioral subspace. Insets
show closerlook to the dominant trajectories. Right, neural trajectory lengths
for selfentry (top) and otherentry (bottom) during the ITI (n =14 relative dom
mice, n =13 relative sub mice; selfentry:2-way RM-ANOVA main effect of rank
Fuas)=77.7,p=1x10"7%; other entry: 2-way RM-ANOVA main effect of rank

Fas =110, p=2x107°. Self entry events are aligned to port entries of the subject
mouse while other entry events are aligned to the competitor’s port entries. ITI
portentries refer to portentries that occurred outside of the tone period.
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Extended DataFig.7|See next page for caption.

a Winning tr
AlphaTracker
output Baseline Baseline
&
o
=
B
3
3
@
b Relative rank ¢ d Win frials Win trials e Lose trials Lose trials f Self entry (tone) Other entry (tone)
— Dom lose Relative rank close to port far from port close to port far from port excluding “place calls excluding "place celis”
— Domwin =2 [J suo n W Befare cue W Before cue P Before entry | Before entry
Sub lose =29 W Dom wwn FICUE Pl Cue 7 Entry . Entry
sees Sub win —
400 03 4000 4000 1500 1500
* ek
5 3 = = b = £
= He o o = =]
8 B2 § § [ B 5
wa w5 T & =
ma &
& 3 g ,g ‘ ,g B
‘.c""‘- |
50—5 0 [ 10 e -1 1 H Dom  Sub Dom  Sub Y Dom  Sub Dem  Sub " Dom  Sub g Dom  Sub
Time from cue onset {s) Correlation coefficient (r) Relative rank Relative rank Relative rank Relative rank Retative rank Relative rank
g Trajectory Cue  Trajectory Trajectory  Port  Trajectory Trajectory  Port  Trajectory
start onset  end start entry end start entry end
Oscssspoxsssnm \Win O Random group 1 Seeeeesessm Sell  ORandom group 1 B g Salf aroup 1
50 Oy Los: @ Random group 2 60+ Spmmybp— Other  @Random group 2 601 Other g group 2
Before cue Cue Before entry  Entry Before eniry  Entry
- _ _ o
El 3 3 -
& 5 &
o~ ™ ™
9 9 Q
a o a
o 1 0 J 1] 1
0 PC.1{au.) 80 0 PC. 1{au) 80 0 PC.1lau) 80
h i i
M Before group 1 Il Before group 1 M Before group1 [ Before group 1 M Before group1 [ Before group 1
W Cuegroup1 [ Cue group 1 W Entrygroup1 [l Entry group 1 M Entrygroup1 [l Entry group 1
[ Before group 2 [ Before group 2 [] Before group 2 [ Before group 2 [] Before group 2 [ | Before group 2
] Cue group 2 [ cue group 2 - Wi Entry group 2 ] Entry group 2 == Self [ Entry group 2 ["] Entry group 2 - Seif
3500 3500 300 iomy 2000 2000 00, oOmer 1000 1000 300 T Omer
§
] §N - B H i - 2 5 [rtemsoms gt
- i zo = -} I _I. L]
g % l Ble z5 g .I [ l l %E b H én‘%
g H L - = 1 o B 3%
& i g £s : ts
oo @ o 2 %
kL o o
. 04 . . i . — 0 A—
Win trials Lose trials -5 Q 5 Self entry Other entry a Self entry Other entry - (1] 5
Time (s) (tone) (tone) Time () (1T (] Time (s)



Extended DataFig.7 | mPFC population dynamics during social
competition are notdrivenbylocation or mouseidentity. a, Average
occupationin different parts of the chamber for win vslosetrials for the five
seconds prior to tone vs first five seconds of tone. Black squares represent the
reward portlocation. b, Distance to reward port differed by trial-type but not
by rank (trials:dom win =290, domlose = 349, subwin =349, sub lose =290;
2-way ANOVA, main effect of trial-type F(1,1274) =353, p = 8.8x107°, rank
p=0.098andinteraction p=0.066).c, Distribution of the correlation
coefficientsfor firing rate and distance to port for the population of mPFC
single units did not differ by rank (dom =321, sub =479; KS test, p=0.48).d, To
determineif distance to reward port affected the population dynamics during
winand losetrialsasubset of data with matched video conditions was split by
distancetoreward port. Neural trajectory lengths were higher for relative
subordinates during win trials in which mice were close or far to the reward port
duringtone onset (domn =19 sessions, subn =18 sessions; win close to port:
2-way RM-ANOVA main effect of rank F(, 35,=738, p = 5x107%; win far from port:
2-way RM-ANOVA main effect of rank F; 35, = 588, p=3x102°). e, Neural
trajectory lengths were higher for relative subordinates during lose trialsin
which mice were close or far from reward port during tone onset (domn =19
sessions, subn =18 sessions; lose close to port: 2-way RM-ANOVA main effect of
rank F, 35, = 588, p = 3x102; losefar from port: 2-way RM-ANOVA main effect of
rank F, 35 = 46.7,p =5x10™").f, To determine if reward port “place cells”
contributed to neural trajectory rank differences we calculated the neural
trajectory lengths without cells that were correlated to distance to portina
subset of datawithequivalent video settings (video resolution and camera

angle). Left, neural trajectories for selfentry during the tone are highest for
relative subordinates without the distance correlated cells (domn =18
sessions, subn =18 sessions; 2-way RM-ANOVA main effect of rank F; ;,)=94.4,
p =1x1072). Right, neural trajectories are highest for relative subordinates
without the distance correlated cells (dom n =18 sessions, sub n =18 sessions;
excluding correlated cells: 2-way RM-ANOVA main effect of rank F; 5,,=100,

p =1x10").g, Neural trajectories of mPFC population activity for two
randomly selected halves of the data for (left) win and lose trials, (middle) port
entriesduringthe tone and (right) ITI portentries (datafrom 49 recording
sessions from 20 mice). All trajectories reflect the mean trajectories across 50
bootstrappingiterations. h, Left, trajectory lengths for win and lose trials when
dataisdivided randomly show no effect of group indicating that the effect of
rankis not due to chance (n=50; win: 2-way ANOVA, event F; 1o, = 8.41,
p=0.004,group p=0.62;lose: event p=0.13, group p = 0.65). Right, mean
trajectory distances between groups for win and lose trials. 1, Left, trajectory
lengths for portentries during the tone whendatais divided randomly show no
effect of group (n=50; selfentry:2-way ANOVA, event F; ;0. =14.2,p=0.0002,
group p=0.97; otherentry:F 155 = 6.76, p = 0.01, group p = 0.31). Right, mean
trajectory distances between groups for selfentry and other entry during the
tone.j, Left, trajectorylengths for ITI portentries when datais divided
randomly show no effect of group (n = 50; selfentry:2-way ANOVA, event
Fa196=10.3,p=0.001, group p=0.93; otherentry: event p=0.96, group
p=0.87).Right, mean trajectory distances between groups for selfentryand
otherentryduringtheITI.
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Extended DataFig. 8| Decoding performance forrelative and absolute
socialrank, and competitive success with different datasets. a, Support
Vector Machine (SVM) data pipeline to decode rank or competition outcome
based onsingle trial population mPFC datain the common behavioral
subspace. b, mPFC population encoding of win/lose in relative dominants
generalizestorelative subordinates. Decoding performance (areaunder the
receiving operating curve; AUC) when (left) training and testing on relative
dominantdataor (right) training on dominant and tested onrelative
subordinate datawas higher than chance (shuffled performanceindicatedin
gray). (Wilcoxon rank sum,dom/dom p =0.0002,dom/sub p =0.003).c, mPFC
populationencoding of win/lose inrelative subordinates does not generalize
torelative dominants. Decoding performance (areaunder thereceiving
operating curve; AUC) when (left) training and testing on relative subordinate
datawas higher than chancebut not when (right) testing on relative dominant
data (shuffled performanceindicated in gray). (Wilcoxon rank sum, sub/sub
p=0.0002,sub/domp =0.14).d, Decoder performance for classifying
competition outcome usingtraining datafromwinner data (e.g. mouse won
majority of trials) and testing data from loser data (e.g. mouse lost majority of
trials) and using training data from loser data and testing data from winner data
(Wilcoxon rank sum: left, baseline vs shuffle p = 0.10, left, cue vs shuffle
p=0.0002, right, baseline vs shuffle p = 0.02, right, cue vs shuffle p=0.0002;

trained on winner and tested on loser data trained loser and tested on winner data
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Wilcoxon signrank: loser base vs cue p=0.002, winner base vs cue p = 0.004).
Allerrorbarsindicate standard error from 10-fold cross-validation. e, SVM
performance for decoding relative rank specifically for intermediate (ranks 2
or 3) mice; mean AUC vs shuffled AUC Wilcoxon rank sum: p=0.0002).

f, Absolute rank canbe decoded from mPFC population activity during social
competition. One model was trained per absolute rank (mean performance
acrossranks vs shuffled data; Wilcoxon rank sum p = 0.0002). g, Absolute rank
canbedecoded for rank1and 4 animals from mPFC population activity during
social competition. One model was trained to discriminate rank 1trials from
rank4 (mean performance across ranks vs shuffled data: Wilcoxon rank sum
p=0.0002). h, Absolute rank can be decoded from mPFC population activity in
mice performing reward task alone. One model was trained per absolute rank
(mean performance across ranks vs shuffled data; Wilcoxon rank sum
p=0.0002).i, Left, experimental design. In15 mice the same neurons were
recorded during alone trials and followed by competition trials. Right, mPFC
population activity can decode between alone tone presentations and win
trials during the competition trials (shuffle performanceindicated by gray line;
mean AUC vs shuffled AUC Wilcoxonranksum p = 0.0002). j, mPFC population
activityis not sufficient to decode early vs late trials within task (alone mean
AUC vs shuffle AUC Wilcoxon sum rank p = 0.47; comp mean AUC vs shuffle
AUC Wilcoxonsumrank p = 0.47).
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Extended DataFig. 9|See next page for caption.
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Extended DataFig.9|Additional datafor mPFCsingle unitresponsesto
task-relevant events duringsocial competition. a, Top, Dendrogram for
functional clusters and heatmap of mean firing rate for all the neuronsincluded
inthe hierarchical clustering (n =913 cells). Gray cells in the dendrogram
indicate cellsin functional clusters that did not meet criteria of mean z-score
being higher than2 or lower than -1for atleast one event. Bottom, distribution
of mPFC cellsacross functional clustersinrelative subordinates and relative
dominants. b, Left, mPFC tone responsive cellswhen mice perform the reward
task alone. Number of responsive cells and response magnitude to the tone
doesnotdiffer betweenrankland rank4 mice (rank1exc =8ranklinh=8rank
4 exc = 8rank4inh =4;Fisher’s exacttest, total responsive per group p = 0.16;
Wilcoxonranksumacross groups: exc p=0.87,inh p=1.0). Middle, mPFC tone
portentriesresponsive cellswhen mice performthe reward task alone. Number
of responsive cells and response magnitude to port entries during tone does
notdifferacross dom (rank 1) vs sub (rank 4) mice (dom exc =5dominh =25sub
exc=9subinh=16;Fisher’s exact test, total responsive per group p=0.09;
Wilcoxonrank sumacross groups: exc p = 0.23,inh p = 0.62). Right, mPFC inter
trialinterval (ITI) portentries responsive cells when mice perform the reward
task alone. Number of responsive cells and response magnitude to port entries
duringITIdoes not differ between rank1and rank 4 mice (rank1exc =10, rank1
inh =23 rank 4 exc =9 rank4inh=49;Fisher’s exact test, total responsive per
group p=0.06; Wilcoxonranksumacross groups:excp = 0.84,inhp=0.17).

¢, Total responsive cells and response magnitude to task-relevant event during
social competition for absolute rank1vs rank 4 (win trials: domexc =20, dom

inh=11,subexc=7,subinh =14, Fisher’s exact test p = 0.11, Wilcoxon rank sum
excp=0.23,inhp=0.03;losetrials: dom exc=3dominh =3,subexc=0, sub
inh =1, Fisher’sexacttest p=0.12, Wilcoxon rank suminh p = 0.50; selfentries
tone:domexc=23,dominh =57, subexc=24,subinh=32, Fisher’s exact test
p=0.006, Wilcoxonranksumexcp =0.42,inhp =0.77; other entries tone: dom
exc=14,dominh16, subexc =27,subinh =19, Fisher’sexact testp = 0.11,
Wilcoxon ranksumexcp =0.049,inh p = 0.04; selfentries ITldom exc=31,dom
inh =89, sub exc =21, subinh=56, Fisher’s exact test p = 2x10-5, Wilcoxon rank
sumexcp =0.01,inh p =0.41; other entries ITIdom exc=13,dominh =41, sub
exc=8,subinh =21, Fisher’sexact test p=0.001, Wilcoxon rank sum exc
p=0.11,inhp=0.008).d, Total responsive cells and response magnitude to
task-relevant event during social competition for intermediate rank mice
(ranks 2 and 3) by relative rank (win trials: dom exc =4,dominh=3,subexc=35,
subinh=2, Fisher’sexacttestp = 0.76, Wilcoxon rank sumexc p=0.11,inh
p=0.80;lose trials:domexc =1dominh =3,subexc=3,subinh =0, Fisher’s
exacttest p =1, Wilcoxonrank sumexc p =1; selfentries tone: dom exc =17, dom
inh=30,subexc=7,subinh =14, Fisher’s exact test p=0.01, Wilcoxon rank sum
excp =0.89,inhp=0.57; otherentries tone: dom exc =10, dominh 23, sub
exc=3,subinh =10, Fisher’s exacttest p=0.01, Wilcoxon rank sumexc p = 0.46,
inhp=0.79;selfentriesITIdom exc=15,dominh =42,subexc=11,subinh =21,
Fisher’s exact test p=0.06, Wilcoxonranksumexc p =0.11,inh p = 0.44; other
entriesITiIdomexc=9,dominh=26,subexc=1,subinh =16, Fisher’sexact test
p=0.07, Wilcoxonranksumexcp =0.20,inhp=0.90).
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Extended DataFig.10 | mPFC-LH photostimulationdoes not affect other
motivated behaviors. a, Representative images showingelectrode lesions
and mPFC-LH cellsand LH axon terminals (tdTomato). b, Representative
images showingelectrode lesions and mPFC-BLA cells and BLA axon terminals
(tdTomato). ¢, Responsive cells to tones and port entries while performing the
reward task alone vsinsocial competition (alone: tone mPFC-LH n =2/13,
mPFC-BLA n =3/5,non-phototagged n =54/470; entries during tone: mPFC-LH
n=_8/13, mPFC-BLA n=2/5, non-phototagged n =115/470; entries during ITI:
mPFC-LHn =5/13, mPFC-BLA n =3/5, non-phototagged n =170/470;
competition win trials: mPFC-LH n =3/43, mPFC-BLAn =1/10, non-phototagged
n=62/920; self entries during tone mPFC-LH: n =11/43, mPFC-BLAn =1/10,
non-phototagged n=193/920; self entries during ITl: mPFC-LH n =19/43,
mPFC-BLA n=2/10, non-phototagged n=271/920, Fisher’s exact test non-
photovsLH p =0.011).d, Summary of mPFC optical fiber location (indicated
with horizontal gray lines), mPFC viral expression and LH CAV2-Creinjection
sites across mice for experiments shownbelow and in Figure 4. Distance to
bregmaisindicated under eachbrainslice. Top row shows LH injectionand

bottom row shows mPFCinjection and fiber.e, mPFC-LH photostimulationin
ChR2 micedid not change latency to pick reward while performing reward task
alone (n=10; paired t-test, p = 0.42). f, mPFC-LH photostimulation did not
increase chow eatinginthe homecage (€YFPn=8,ChR2n=7;2-way RMANOVA
nosignificant effect of light, virus or interaction). g, mPFC-LH
photostimulationin ChR2 mice did not change time spentinsocial chamber in
the3-chamber socialinteraction assay (n =10; paired t-test, p=0.79).h, mPFC-
LH photostimulation did not change anxiety-like behavior in the open field
(ChR2n =38, eYFPn=8;2-wayrepeated measures (RM) ANOVA no significant
effect oflight, virus orinteraction). i, mPFC-LH photostimulation did not evoke
conditioned placed preference or aversion (ChR2n =5, eYFP n=5;2-way RM
ANOVA nossignificant effect of light, virus or interaction). j, Effort based
T-maze allows mice to choose between alow reward low effortarmor a high
reward high effort armin which they must climb awall to obtain the reward.

k, mPFC-LH photostimulation did notincrease high effort choicein the effort
T-maze (ChR2n =8, eYFP n=9;2-way RMANOVA no significant effect of light,
virus orinteraction for both 14 and 7 cm walls).
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Sample size Sample sizes were not predetermined and based on similar studies in the literature (Wang et al., 2011; Zhou et al., 2017). Sample size is
reported in the legends and methods.

Data exclusions  Subjects with mistargeted viral injections were excluded from analyses. Animals with electrodes that did not had any cells were used as
competitors in competition sessions. Electrophysiology recording sessions in which there was battery failures in the recording devices were
excluded from the study.

Replication Our behavioral assay was piloted in a separate group of mice that was not included on this study. In both the pilot and the study we see the
same behavioral effects of relative social rank. Our optogenetic experiments were ran in two cohorts and in both we saw the same effect.
Many of our neurophysiological findings replicate across different groups of relative rank: using all mice across all ranks, restricting it to
intermediate ranks, and looking at just absolute rank 1 vs rank 4 animals.

Randomization  For optogenetic manipulation experiments the cage assignment to control or experimental group was randomized. For behavioral
competition experiments and tube testing the order of the competitions was randomized. Given that control recordings with the animals
alone were done in the same arena as the competition, all the recording alone controls happened before the competition recordings to avoid
context associations of previous competitions during the control recordings. Animals were determined to be relative dominant vs
subordinates based on the ranks determined by the tube test which occurred in a randomized order daily for the duration of the experiment.

Blinding During behavioral testing investigators were not always blind to the animal's ranks given familiarity with the subjects. However, for behavioral
scoring the experimenters were blinded to the animal's ranks. For optogenetic experiments the experimenters were blinded to the group
assignment of the animals (eYFP vs ChR2). During electrophysiological data processing and analysis experimenters were blinded to the
animal's ranks until the point that all data was processed such that group comparisons could be made.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChiIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Group housed male mice of C57 strain, between the ages of 8-20 weeks were used for all the experiments.
Wild animals No wild animals were used in this study
Field-collected samples  No field-collected samples were used in this study

Ethics oversight IACUC Salk Institute for Biological studies and MIT

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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