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The study of neurobiology of behavior is a highly multi-disciplinary area and

intersects with other disciplines studying human and animal behaviors

including ethology, psychology, cognitive science, economics, artificial

intelligence and clinical science. A common goal, however, would be to

elucidate how behaviors are generated in terms of the structure and function

of neural circuits. How do different cell types and their connectivity underlie

behavior? How do properties of neurons and synapses affect the function of a

neural circuit? An ultimate goal would be to derive principles regarding how

neural circuits work and how they control behavior in healthy as well as

disordered brains.

Although this is an enormous undertaking, the field of neurobiology has

made revolutionary changes accelerated by the development of new tools.

With the advent of modern neuroscience tools, neurobiologists can now

perform the types of experiments that previous researchers could only dream

of [1]. These tools have allowed us to monitor and manipulate the activity of

neurons in behaving animals with unprecedented precisions. New tools have

allowed us to identify connectivity of neurons with greater precisions. These

studies have made various novel findings but also revealed various new

challenges that the field faces. In this issue, we asked experts who have

contributed to recent progress toward understanding how neural circuits

regulate behaviors. We hope that these reviews will provide not only

summaries of previous work but also help outlook what findings or research

areas to come in the future.

New tools and behavioral paradigms
The development of new technologies has dramatically changed the land-

scape of neurobiological experiments. First, experiments using rodents and

other genetically-tractable animals performing complex tasks have become

more common. Second, while novel tools have led to unprecedented results

with greater precision and specificity, the field has begun to evaluate the

pros and cons of novel as well as more conventional methodologies.

Although addressing this completely would be impossible in just a few

papers, two papers in this issue aim to facilitate discussion on these topics.

Neuroscientists have long debated how to establish a ‘causal’ link between

neuronal activity and behavior. It has been acknowledged that it is important

to use carefully designed behavioral paradigms, and to draw conclusions

taking into account multiple lines of supporting evidence. For instance, the

gold standard of causality had been developed in studies of sensory systems

that combined psychophysical behavioral paradigms, neurobiological

experiments (not only manipulating but also monitoring endogenous neu-

ronal activity), and simple models or theories regarding quantitative relation-

ships between neuronal activity and behavior [2].

For the type of experiments discussed above (i.e. ‘causality’ experiments in

sensory systems), non-human primate studies had been the dominant

experimental paradigms, due largely to the ability to train these animals

in sophisticated behavioral paradigms. Earlier efforts, however, enabled us

to adapt comparable behavioral paradigms to rodents (e.g. [3–5]). On the

other hand, there have also been some concerns in using these well-

constrained behavioral paradigms. Training animals in these paradigms

often requires extensive training (sometimes months) using unnatural
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behaviors. It has been argued that the results obtained using these para-

digms may not reflect how the brain operates in a ‘natural’ behavioral

condition. Other rodent experiments have used behaviors that are more

‘natural’ to the animals, such as spatial navigation, reflexive responses, or

innate behaviors. The behavioral paradigms that rely on more ‘natural’

behaviors might be advantageous from some viewpoints. For instance, less

training is necessary, and it likely taps onto ‘natural’ brain mechanisms.

However, some of these behaviors are harder to quantify, and can be difficult

to align with simple models or theories. Luaviet, Ehrich and Churchland

(2018) discuss the challenge of how to design behavioral paradigms, using

studies of decision-making in rodents as an example. They discuss the pros

and cons of different approaches, and propose three axes — ethological,

complexity and sensory motor compatibility — in evaluating designs of

behavioral paradigms.

With new tools such as optogenetics and pharmacogenetics, we can now

activate or inactivate neurons with greater temporal precision and cell-type

specificity. Although studies using these new tools have provided novel

insights addressing ‘causality’, recent studies have also identified interpre-

tational difficulties in these studies. For one, neurons are connected in a

complex manner, and form a highly dynamic system. Therefore, manipula-

tion of one population of neurons can cause rippling effects on the activity of

other neurons in a highly dynamic manner (e.g. [6]). Furthermore, the brain

has various compensatory mechanisms at different timescales. The field,

thus, needs conceptual developments regarding how to evaluate and inter-

pret the effect of manipulations. Wolff and Olveczky (2018) together with

other recent articles [7,8], provide important insights based on experimental

data, emphasizing holistic approaches integrating complementary methods.

As Luaviet et al. (2018) emphasizes, a choice of behavioral paradigm depends

on particular questions in each study. There is also a balance between

hypothesis-driven versus data-driven approaches. Although the above dis-

cussion may emphasize theory-guided, hypothesis-driven approaches, the

conclusions obtained from hypothesis-driven approaches can sometimes be

narrowly constrained or become largely confirmatory in nature.

Here our aim is not to provide one answer to the above questions. Instead,

this volume contains overviews on recent progress in the neurobiology of

behavior. Our hope is to showcase a spectrum of studies that spans across the

‘axes’ both in terms of behaviors and techniques (including studies in

humans and computational modeling). The landscape of neuroscience is

rapidly changing. We hope that the papers in this volume provide a broad

perspective on the field, and inform our outlook on future developments in

the field of neurobiology.

Behavioral modulations of information processing
Sensory information guides behaviors. Neuroscientists have studied how

sensory information is represented and transformed in the brain while the

information travels through a ‘sensorimotor chain’ to control behaviors.

However, these ‘chains’ are not static. The same sensory input may trigger

different behavioral outputs depending on an animal’s needs or behavioral

context. How do behavioral contexts modulate or ‘gate’ information flows in

the brain? This question has long been studied, for instance, in the context

of attention [9,10]. Recent studies, using rodent models, have begun to

elucidate detailed neural circuit mechanisms at the level of cortical micro-

circuit as well as global brain network. Angeloni and Geffen (2018) discuss

recent progress in the auditory system. These studies have elucidated a role

for specific inhibitory interneurons in modulating sensory responses in the
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neocortex. Burgess, Livneh, Ramesh and Andermann

(2018) summarize recent studies on how motivational

drives such as hunger modulate information processing

in the visual cortex and beyond. These studies highlight

interactions at a global network level: hunger-related

signals originating in the hypothalamus affect neural

activities in other subcortical areas including the amyg-

dala, which then modulate information processing in

higher visual association areas and the insular cortex.

A challenge in neuroscience is to obtain ‘principles’ by

which the brain or a neural circuit operates, based on

experimental results such as those discussed in the pre-

ceding two papers. Can we find a common or recurring

computation underlying specific brain functions? If so,

how is such a computation implemented in neural cir-

cuits? Can we find a circuit ‘motif’ that is suited to

perform such a computation? Why is a particular imple-

mentation or motif chosen among other potential solu-

tions? Wang and Yang (2018) provide their perspectives

on these points with regard to ‘pathway gating’ in the

brain, particularly focusing on a circuit motif — disinhi-

bitory circuits — that involves dendritic inhibition

through a specific type of inhibitory neuron (somato-

statin-positive neurons) in the neocortex.

Reinforcement learning
One of the successful theories that provide a mechanism

underlying behaviors is reinforcement learning [11].

Reinforcement learning theories provide an algorithm

for trial-and-error learning and action selection, devel-

oped in the field of artificial intelligence, with its basic

ideas rooted in animal learning theories [12,13]. A critical

step in reinforcement learning is to predict future rewards

(and punishments) based on the current ‘state’ that an

agent occupies. An agent then chooses an appropriate

action based on its predictions. The basic algorithm used

in reinforcement learning is to update these predictions

when a prediction does not match reality, that is, when

these is a discrepancy between prediction and actual

outcomes (i.e. ‘prediction error’). It has been shown that

dopamine neurons in the midbrain exhibit firing patterns

that resemble reward prediction errors (RPEs) [14–16]. In

this volume, Stauffer (2018) provide an overview of how

classic studies on dopamine neurons as well as recent

studies using modern tools have contributed to establish

this core idea. Furthermore, Stauffer (2018) extend his

discussion to recent findings that dopamine RPEs approx-

imate subjective values or ‘utility’ formulated in eco-

nomic decision theories, and to studies addressing neural

circuit mechanisms regarding how RPEs are calculated in

the first place.

Although much research on reinforcement learning has

been in the context of reward, punishment is an equally

important consideration in reinforcement learning. These

theories also extend to aversive prediction error, which is
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relevant in the well-studied behavioral paradigm of Pav-

lovian fear conditioning [13,17]. Johansen and Ozawa

(2018) discuss the circuits that mediate fear conditioning

and associative learning framed in the context of aversive

prediction error. Johansen and Ozawa identify circuits

that are largely distinct from those implicated in detecting

and representing RPEs, including the lateral amygdala,

central amygdala, locus coeruleus and periaqueductal

gray.

Prediction of future reward (and punishment) guides

action selection as well as the calculation of RPEs. Recent

studies have highlighted distinct mechanisms for predict-

ing reward. In the original reinforcement learning models,

reward predictions were made based on direct associa-

tions between states and rewards (model-free mecha-

nisms). However, recent data have highlighted that

reward prediction often involves inference from ambigu-

ous information or predictions based on more abstract

‘models’ of the environment or the task at hand. Langdon,

Sharpe, Schoenbaum and Niv (2018) reviews new exper-

imental results and theories indicating the importance of

these inference or model-based reward predictions as well

as how the animal learns a ‘model’ to begin with.

Song learning in songbirds has long been a great model for

trial-and-error learning. Indeed, this is one of the earliest

systems to which reinforcement learning models have

been applied [18]. Imitating a father bird’s song requires

storing a memory of the ‘tutor’ song, reproducing it, and

evaluating whether it matched the tutor song. Birds learn

to sing by repeatedly practicing without explicit external

rewards. Recent data suggest that song learning involves

‘internal reward’ that is signaled by dopamine [19]. The

distinct features of learning in songbirds have presented

unique problems as well as novel insights into general

principles of reinforcement learning [20,21]. Mackevicius

and Fee (2018) presents novel perspectives on song

learning. One way to model song learning is to view each

moment during the song as a ‘state’ in reinforcement

learning. A song is constructed over a sequence of states,

and the states are represented by sequential activation of

neurons in the premotor area, HVC. The pattern of HVC

activity is then associated with proper motor outputs

through reinforcement learning. Mackevicius and Fee

(2018) discusses how state representations in HVC may

be formed through interactions with the auditory system

that may store a memory about the tutor song, and

through synaptic plasticity in HVC.

Another animal model that has been used for learning, in

particular, associative learning, is the fruit fly Drosophila
melanogaster. Here dopamine also plays important roles.

Studies in flies have revealed the existence of multiple

dopamine systems, each with a distinct type of signal —

reward, punishment, novelty, etc. Recent studies showed

that seemingly ‘simple’ associative learning is regulated
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by layers of mechanisms that occur on short and long

timescales. Paola, Felsenberg and Waddell (2018) dis-

cusses roles of recurrent connections in reverberating

neural activities, connecting reward information at dis-

tinct timescales (e.g. immediate taste feedback versus

later nutritional impact), and re-evaluating and reconso-

lidating associative memories. The empirical results dis-

cussed in this review provide richer biological mecha-

nisms that are critical, yet often overlooked by simpler

reinforcement learning models.

Decision-making
Decision-making involves evaluating and choosing

between different options, and executing an appropriate

action. Recent studies have begun to reveal neural circuit

mechanisms underlying decision making. These pro-

cesses can be broken down into multiple components.

Rich, Stoll and Rudebeck (2018) discusses neural proces-

sing while an animal evaluates different options. Evalua-

tion of options often requires shifting attention between

different options and adapting to changing behavioral

needs. They discuss how neurons in the orbitofrontal

cortex modulate their activity dynamically within each

evaluation period or over a longer timescale where behav-

ioral contexts are changed.

As a decision is formed, the animal has to translate it into

an appropriate action to achieve its goal. This process

requires winner-take-all dynamics, often modeled by a

neural integrator (evidence accumulation) or attractor

dynamics [22]. When an action needs to be withheld

until the right moment, the animal has to keep the

relevant information in short-term memory, and prepare

for a desired motor output. Neural processes involved in

the preparation and execution of motor actions has been

studied in various animals including humans, non-human

primates and rodents. More detailed views at the neural

circuit level have been obtained recently in mice and,

even simpler organisms such as zebrafish and fruit flies.

Svoboda and Li (2018) summarizes recent progress in

motor preparation in non-human primates and mice.

Motor preparation involves neural circuit dynamics in a

‘motion-null space’, whereby activity patterns evolve

without affecting immediate motor outputs. Modern tools

have allowed researchers to elucidate multiple brain areas

and interactions between them that together regulate

these attractor-like dynamics in mammalian brains.

Koyama and Pujala (2018) discusses neural circuit motifs

subserving distinct, yet related, computations. They start

by describing a ‘circuit motif’ involved in escape behavior

in fish — a life-or-death decision in this species. This

simple circuit motif — mutual inhibition of lateral inhi-

bition — achieves point attractor dynamics. This circuit

motif has been found in neural circuits involved in

different functions and animal species, including selec-

tive attention in barn owls and direction tuning in the

mouse retina, suggesting that this circuit motif forms a
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such as sharpening outputs in the face of noisy inputs.

Hippocampus: representation of spatial maps
and beyond
The idea of model-based control of behavior originates in

the ‘cognitive map’ proposed by Tolman [23]. Decades of

work in human patients and animal models have shown

that the hippocampus plays a critical role in episodic

memory [24]. The discovery of neurons that represent

various spatial features (place cells, head direction cells,

border cells, and grid cells) has indicated that the hippo-

campus and its related areas such as medial entorhinal

cortex support spatial navigation. Giocomo (2018) dis-

cusses recent finding suggesting that the role of hippo-

campus may exceed beyond spatial navigation. These

studies have found hippocampal neurons representing

beyond the current spatial location including past and

future spatial locations, and time elapsed from a certain

event. Furthermore, hippocampal neurons are heteroge-

neous not only in their response properties but in their

connectivity, intrinsic properties and gene expressions.

Giocomo (2018) points out that further theoretical and

experimental development integrating the heterogeneity

of neurons is needed toward understanding how neural

representations in hippocampus are generated, and how

they support memory or behavior.

Emotional processing
Emotion may influence a multitude of processes ranging

from sensory perception/attention to decision-making to

the execution of motor outputs. Because it is impossible

to measure the subjective emotional state of animals,

researchers rely on the measurement of motivated beha-

viors as a proxy for internal emotional state.

Emotions have been theorized to mediate the rapid

selection of an appropriate behavioral response (e.g.

approach or avoidance) to environmental stimuli associ-

ated with rewards or threats, the most primitive form of

decision-making [25–27]. Given the critical importance of

the ability to imbue environmental stimuli with positive

or negative valence, amygdala circuits are well-conserved

across evolution [28].

As suggested by classic experiments from the 1960s from

Schachter and Singer, salient or arousing stimuli will then

be assigned a positive or negative valence through asso-

ciative learning processes [29]. O’Neill, Gore and

Salzman (2018) synthesize the recent proliferation of

electrophysiological, anatomical and genetic studies

investigating the process of valence assignment in amyg-

dala circuitry. As mentioned above, Johansen and Ozawa

(2018) discuss the concept of aversive prediction error and

describe recent work elucidating the underlying circuitry

connecting the lateral amygdala, central amygdala and

periaqueductal gray.
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The central amygdala (CeA) has been described as

‘striatal-like,’ given that it receives input from the

‘cortical-like’ basolateral amygdala complex (BLA), and

is composed of GABAergic medium spiny neurons [30–

32]. Research in the CeA in the past few decades has

emphasized aversive and defensive-related behaviors,

recent work using optogenetic manipulations of different

cell populations of the CeA have yielded opposing results.

Fadok, Markovic, Tovote and Luthi (2018) review, dis-

cuss and reconcile these apparently contradicting results

to formulate several conceptual models for the function of

CeA circuits. They describe a working model for CeA

function and how it has evolved with new evidence from a

relay station to a gating model and come to an integrative

model where the CeA integrates information about inter-

nal state and external cues and contexts to drive adaptive

behavior.

The medial prefrontal cortex (mPFC), which is recipro-

cally connected with the amygdala [33,34], has been

implicated in a wide array of functions, including both

emotional regulation and social behavior [35–37].

Grunfeld and Likhtik (2018) frame work emerging largely

from rodent studies on fear conditioning and extinction,

anxiety, and action selection in the context of a concep-

tual model of mixed selectivity based on data from

primate studies [38]. They focus on the contribution of

input arising from the ventral hippocampus (vHPC) and

BLA, as the mPFC, vHPC and BLA form the ‘emotional

triad’ (a term coined by Joshua Gordon, personal com-

munication). Based on functional and anatomical data,

they outline a model for the PFC in a ‘winner-take-all’

model wherein selecting one motoric action inhibits

another.

Social behavior
The concept of mixed selectivity describes the functional

flexibility of PFC neurons to change their selective

responding to stimuli depending on the context in a

well-controlled behavioral task [38]. However, this prin-

ciple may also extend itself to innate, naturalistic beha-

viors including hierarchy formation, aggression, and

parental behavior. Zhou, Sandi and Hu (2018) explore

mPFC function in the context of social hierarchy and

review the assays used to quantify social rank, which will

facilitate our investigation of the underlying neural mech-

anisms of social rank representation. Aggressive behavior

may serve to establish dominance, and Aleyasin,

Flanigan, and Russo (2018) explore the motivation for

aggressive behavior. Aggressive behavior has been linked

to activation in a wide range of circuits ranging from PFC

to hypothalamic, limbic and brainstem regions, including

striatal circuits traditionally associated with reward.

There is some overlap between aggressive behavior

and parental behavior, including activity in the medial

preoptic area (mPOA), the paraventricular hypothalamic

nucleus (PVN), and dorsal raphe nucleus (DRN).
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To take these basic insights to translation, we must first

consider the importance of studying sex differences.

Neuropsychiatric diseases often show distinct prevalence

in men and women, making the investigation of sex

differences in animal models paramount. Here,

Shansky (2018) describes changes in the field of sex

differences research, and common interpretational pitfalls

and potential solutions. Bredewold and Veenema (2018)

discuss the role of oxytocin and vasopressin in modulating

anxiety-related and social behaviors. Indeed, some innate

behaviors are explicitly sex-specific, including parental

behavior. Kohl and Dulac (2018) review recent advances

applying circuit dissection approaches to pin down the

distinct facets of parenting behavior to specific circuit

components.

Reverse translation
Finally, the authors summarize work that takes a reverse

translational angle to provide a mechanistic understand-

ing for the remarkable effects of deep brain stimulation

(DBS). By using genetically-encodable optogenetic tools

for manipulation, Post and Warden (2018) take a reverse

translational perspective in reviewing this recent work

from electrical DBS of the subgenual cingulate in humans

[39] with optogenetic DBS in the mouse homolog, the

vmPFC. Creed (2018) draws from similar principles but

discusses the application of optogenetic DBS in the

context of addiction, highlighting the importance for

further developing noninvasive strategies for manipulat-

ing circuit components.
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