
Vol.:(0123456789)1 3

Psychopharmacology (2023) 240:477–499 
https://doi.org/10.1007/s00213-022-06284-5

ORIGINAL INVESTIGATION

Thalamus sends information about arousal but not valence 
to the amygdala

Chris A. Leppla1 · Laurel R. Keyes2,3 · Gordon Glober1 · Gillian A. Matthews1,3 · Kanha Batra3 · Maya Jay1 · Yu Feng1 · 
Hannah S. Chen1 · Fergil Mills1,3 · Jeremy Delahanty2,3 · Jacob M. Olson1 · Edward H. Nieh1 · Praneeth Namburi1 · 
Craig Wildes1 · Romy Wichmann1,3 · Anna Beyeler1 · Eyal Y. Kimchi1 · Kay M. Tye1,2,3,4 

Received: 18 August 2022 / Accepted: 23 November 2022 / Published online: 16 December 2022 
© The Author(s) 2022

Abstract
Rationale The basolateral amygdala (BLA) and medial geniculate nucleus of the thalamus (MGN) have both been shown 
to be necessary for the formation of associative learning. While the role that the BLA plays in this process has long been 
emphasized, the MGN has been less well-studied and surrounded by debate regarding whether the relay of sensory informa-
tion is active or passive.
Objectives We seek to understand the role the MGN has within the thalamoamgydala circuit in the formation of associative 
learning.
Methods Here, we use optogenetics and in vivo electrophysiological recordings to dissect the MGN-BLA circuit and explore 
the specific subpopulations for evidence of learning and synthesis of information that could impact downstream BLA encod-
ing. We employ various machine learning techniques to investigate function within neural subpopulations. We introduce a 
novel method to investigate tonic changes across trial-by-trial structure, which offers an alternative approach to traditional 
trial-averaging techniques.
Results We find that the MGN appears to encode arousal but not valence, unlike the BLA which encodes for both. We find 
that the MGN and the BLA appear to react differently to expected and unexpected outcomes; the BLA biased responses 
toward reward prediction error and the MGN focused on anticipated punishment. We uncover evidence of tonic changes by 
visualizing changes across trials during inter-trial intervals (baseline epochs) for a subset of cells.
Conclusion We conclude that the MGN-BLA projector population acts as both filter and transferer of information by relaying 
information about the salience of cues to the amygdala, but these signals are not valence-specified.

Keywords Basolateral amygdala · Medial geniculate nucleus · Associative learning · Valence · Auditory thalamic relay · 
Mouse model · Hierarchical clustering · Neural trajectory analysis

Preface

In tribute to Nadia Chaudhri, and her discoveries regard-
ing how contexts can modulate the representation of cues in 
the amygdala (Sciascia et al. 2015), and other mesolimbic 
circuit components (Chaudhri et al. 2009, 2008; Valyear 
et al. 2020), here we explore what information processing 
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precedes entry into the basolateral amygdala (BLA) from the 
thalamus and develop visualization approaches for exploring 
across-trial temporal dynamics in addition to within-trial 
population activity.

Introduction

Many similarities exist between the medial geniculate 
nucleus of the thalamus (MGN) and the basolateral amyg-
dala (BLA) in how each region encodes information (Wein-
berger 2011). Not only are both regions necessary for the 
formation of cued fear learning, but they both exhibit plas-
ticity following learning, and encode information of multi-
ple sensory modalities (Edeline et al. 1990; Wepsic 1966). 
Numerous studies have focused on the BLA for associative 
learning (Nishijo et al. 1988; Weinberger 2011), and for fear 
and reward learning (McKernan and Shinnick-Gallagher 
1997; Namburi et al. 2015; Rogan et al. 1997).

However, few studies have explicitly tested associative 
learning in the MGN (Bordi and LeDoux 1994; Cruik-
shank et al. 1992; Edeline et al. 1990), due to the long-held 
assumption that the MGN only passively contributes to 
learning by relaying crude tone and somatosensory infor-
mation (LeDoux 2000; Orsini and Maren 2012). However, 
there is evidence that the MGN likely plays a dynamic role 
in the formation of associative learning (Edeline et al. 1990; 
Parsons et al. 2006), fear conditioning (Ferrara 2015; Nabavi 
et al. 2014), and fear memories (Antunes and Moita 2010; 
Han et al. 2008). It has been argued that the MGN is the 
“root” of the auditory associative learning circuit, playing 
an active role and complementing the BLA in the formation 
of cued fear memories (Weinberger 2011).

The current work explores mechanisms underlying the 
formation of associative learning for both reward and pun-
ishment-associated outcomes by evaluating the similarities 
and differences between the MGN and the BLA neural popu-
lation responses. We use a variety of approaches, such as 
hierarchical clustering and neural trajectories, to identify 
categorical differences in how these regions process dis-
crimination learning. To do so, we dissect the neural circuit 
connectivity by exploring direct and indirect connections 
between the two regions. We use traditional experimenter-
defined a priori methods to categorize arousal and valence 
encoding patterns in each region. We further employ an 
algorithmic hierarchical clustering approach to uncover 
unbiased similarities and differences between how and what 
these regions encode. This work employs in vivo single-
unit electrophysiology and circuit-specific optogenetics; 
the former allows us to characterize what information the 
MGN transmits to the BLA during Pavlovian learning and 

the latter provides a method to identify which cells in the 
MGN project to the BLA.

Materials and methods

Experimental design

Animal care and subject details

Adult wild-type male C57BL/6 J mice aged 8 weeks upon 
arrival were used (Jackson Laboratory; RRID: IMSR-
JAX:000,664). All experimental subjects were maintained in 
reverse light-cycle cubicles with ad libitum food and water 
until behavioral experiments began. Animals were housed 
four to one cage until electrode implantation, after which 
they were housed singly. All animal handling procedures 
were in accordance with those put forth by the National 
Institute of Health (NIH) and were approved by the Massa-
chusetts Institute of Technology’s Institutional Animal Care 
and Use Committee (IACUC).

Stereotaxic surgery procedures

For all subjects, surgery was performed under aseptic con-
ditions using a small animal stereotax (David Kopf Instru-
ments, Tujunga, CA, USA) and body temperature was main-
tained using a heating pad. Anesthesia was induced using a 
5% mixture of isoflurane and oxygen. Following induction, 
this mixture was reduced to 2–2.5% and was maintained 
throughout the duration of the procedure (0.5 L/min oxy-
gen flow rate). Once subjects were adequately anesthetized, 
ophthalmic ointment was applied to the subject’s eyes, hair 
was removed from the incision site using hair clippers, and 
the area was scrubbed using 70% alcohol and betadine 3 
times each in alternation, with an injection of 2% lidocaine 
under the skin for local anesthetic. All measurements for 
viral injections, electrode implants, or optrode implants were 
made with Bregma as the origin. Following surgery, subjects 
were placed in clean cages with water-softened mouse chow 
to recover. Cages were placed either under a heating lamp or 
on a heating pad to aid in recovery.

Viral surgery

To record from the medial geniculate nucleus (MGN) 
neurons in a circuit-specific manner, a combination viral 
approach was employed. Following the general surgery pro-
cedures detailed above, an incision was made to provide 
access to the skull. After cleaning the skull, craniotomies 
were made above the basolateral amygdala (BLA) and the 
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MGN. In order to selectively express channelrhodopsin-2 
(ChR2) in BLA-projecting cells in the MGN, an antero-
gradely traveling adeno-associated virus serotype 5  (AAV5) 
coding for ChR2 fused with an enhanced yellow fluores-
cent protein (eYFP) in a double floxed inverted open read-
ing frame (DIO) under the control of elongated factor-1α 
promotor (250  nL of AAV5-EF1α-DIO-ChR2-eYFP) 
was injected into the MGN (stereotaxic coordinates from 
Bregma, in mm: − 3.0  anteroposterior, 1.75  mediolat-
eral, − 3.9   dorsoventral). Concurrently, the retrogradely 
traveling canine adenovirus-2 coding for cre-recombinase 
(400 nL CAV2-cre) was injected into the BLA (stereotaxic 
coordinates from Bregma, in mm: − 1.6 anteroposterior, 
3.35 mediolateral, − 4.9 dorsoventral). Injections were car-
ried out using a 10 μL microsyringe (33 g beveled needle) 
driven at a rate of 0.05 μL/min by a microsyringe pump and 
controller (Micro4; WPI, Sarasota, FL, USA). Viral material 
was allowed to penetrate tissue prior to needle extraction 
(10–15 min/injection site). Separate needles were used for 
each virus to avoid contamination and were flushed thor-
oughly with sterile water following the surgical procedure. 
AAV5 viral aliquots were obtained from the University 
of North Carolina Vector Core (Chapel Hill, NC). CAV2 
viral aliquots were obtained from the Institut de Génétique 
Moléculaire de Montpellier, France.

Electrode surgery

Implantation of electrode and optrode arrays took place 
2–3 months following viral surgery to allow for robust 
viral expression. Following the general surgery procedures 
detailed above, an incision was made to provide access to 
the skull, and the skull was cleaned and scraped to provide 
a stable surface for anchoring microelectrode arrays. A total 
of 8 craniotomies were made to accommodate the implan-
tation of three anchoring skull screws, one microelectrode 
wire bundle, one optrode (comprised of a wire bundle and 
optical fiber), a ground wire, and passive headbar anchor-
ing. The headbar (1in × 1/8in × 1/8in aluminum square stock) 
was attached using cement (Adhesive Dental Cement C&B 
Metabond; Parkell, Edgewood, NY, USA). Cement dried 
prior to implantation of skull screws (15–20 min). Follow-
ing skull screw implantation, electrode and optrode arrays 
were lowered into the BLA (− 1.6 mm anteroposterior, 
3.35 mm mediolateral, − 4.9 mm dorsoventral) and the MGN 
(− 3.0 mm anteroposterior, 1.75 mm mediolateral, − 3.9 mm 
dorsoventral), respectively. The multiarray ground wire was 
placed between the skull and brain surface in a craniotomy 
contralateral to electrode and optrode implantation sites. 
Cement was then applied to the screws, arrays, headbar, and 
ground wire, and allowed to dry for a minimum of 45 min or 
until hard to the touch. A protective layer of dental cement 

was then applied to secure all array and headbar elements. 
A nylon suture was used to close the incision around the 
implanted device. Prior to removal from anesthesia, subjects 
received subcutaneous injections of warm saline (1 mL) 
and meloxicam (5  mg/kg). Following surgery, subjects 
were allowed to fully recover from anesthesia prior to being 
returned to the animal housing facility.

In vivo electrophysiological recording

Electrode construction

Multielectrode arrays used for recording single-unit activ-
ity were custom-designed and built by the experimenter 
(CL). Arrays consisted of two multichannel single-wire 
probes and were constructed using Omnetics microconnec-
tor plugs (Omnetics Connector Corp., Minneapolis, MN) 
as the main structural component. The optrode array used 
for recording in the MGN was connected directly to the 
plug using a plastic spacer. This array was comprised of 17 
single wires (22 μm stablohm wire, polyamide insulated; 
California Fine Wire, Grover Beach, CA) connected to a 
300 μm  optical fiber using polyamide microtubing to align 
the wires. The second array was floating and constructed 
such that it could be moved independently from the connec-
tor and optrode array. This electrode array also consisted of 
17 wires of the same material, and wires were aligned using 
a length of syringe needle cut to suit (2–3 mm in length). 
The wires in both arrays were connected to the contacts of 
the Omnetics connector by hand, and wire insulation was 
stripped by hand using forceps. Each connection was then 
painted with conductive adhesive to ensure a good connec-
tion (Silver Print; MG Chemicals, Burlington ON). Both 
cyanoacrylate glue and epoxy were used to secure compo-
nents. Both arrays were cut to length by hand using fine 
serrated tungsten scissors (Fine Science Tools, Foster City, 
CA), with optrode wire bundle extended beyond the tip of 
the optical fiber (500–800 μm). All wires were gold plated to 
decrease impedance to 150–250 kΩ using a 50/50 gold plat-
ing solution comprised of gold solution (Neuralynx, Boze-
man, MT) and 1 μM polyethylene glycol. Following gold 
plating, a low-impedance bare silver wire (California Fine 
Wire, Grover Beach, CA) was soldered to the final pin on the 
connector, and the connection was coated in dental cement.

In vivo single‑unit electrophysiological recordings

Neural activity was recorded using an Open Ephys acqui-
sition board (Siegle et  al. 2017, J Neural Eng, PMID: 
28169219) in conjunction with 32-channel Intan head-
stages (Intan Technologies, Los Angeles, CA). These data 
were recorded at a sampling rate of 30 kHz, using a band 
pass filter to collect signals between 1 and 7000 Hz. Data 
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processing was carried out using a combination of com-
mercially available as well as custom-written suite of soft-
ware. Initial waveform detection and creation of files for 
cluster sorting was carried out using a custom algorithm in 
MATLAB (MATLAB; MathWorks, Natick, MA). Identified 
spikes were thresholded using a 6-sigma criterion to reduce 
the probability of including spatially attenuated multiunit 
signals and traces were aligned to the depolarization peak. 
Thresholded and aligned traces were then exported in the .
plx format to be imported into Offline Sorter (Plexon Inc., 
Dallas TX), which was used for cluster sorting the spike 
data using principal component analysis (PCA). Behavioral 
events were recorded simultaneously with neural data using 
analog inputs to the Open Ephys acquisition board with the 
same sampling rate as neural data and were in some cases 
multiplexed to reduce the number of recording channels 
required.

Optogenetic stimulation

Optogenetic stimulation for phototagging experiments was 
carried out using a 473  nm Diode-Pumped Solid-State 
(DPSS) laser (OEM Laser Systems, Draper, UT) connected 
to a patch cable using FC/PC connections (Doric, Que-
bec, Canada). Light power for phototagging was calibrated 
to ~ 22 mW at the beginning of each recording session using 
a Thorlabs light power meter designed for use with lasers 
(Thorlabs; Newton, NJ).

Photoidentification protocol

To identify BLA-projecting cells in the MGN as well 
as those cells in the BLA receiving either direct or indi-
rect input from the MGN, we expressed ChR2 in the 
MGN → BLA projections using the circuit-specific viral 
approach detailed above. Following the conclusion of 
behavioral training, but within the same neural recording 
session, light was delivered into the MGN using a laser con-
nected to the optical fiber implanted 500–800 μm above the 
recording site (473 nm, 22 mW). Light was delivered as a 
series of pulses of varying length and frequencies as fol-
lows: 1 s pulses, 5 ms 1 Hz pulses, 5 ms 10 Hz pulses, and 
5 ms 20 Hz pulses. A custom MATLAB script was used to 
identify phototagged cells in the MGN using the following 
criteria: signed rank test, p < 0.001, and z-score > 3.5 within 
10 ms of light onset for 5 ms 1 Hz laser pulses. The 10 ms 
photoresponse latency threshold was used since no cells 
exhibiting recurrent excitatory connections were observed 
during ex vivo whole-cell patching experiments. Network 
cells in the BLA were identified using the following criteria: 
rank-sum test, p < 0.001, within 50 ms of laser onset 5 ms 
1 Hz pulses.

Electrolytic lesioning

Electrolytic lesions were used to verify the placements 
of microelectrode arrays. To carry this out, subjects were 
placed under anesthesia using the same procedure as that for 
stereotaxic surgery. Lesions were created by passing current 
through single wires in the multiarray. In the MGN, lesions 
were made on the channels identified to have phototagged 
cells. In the BLA, between 4 and 6 channels were chosen 
randomly for lesioning. Lesions consisted of passing cur-
rent through each channel for 10 s. Subjects were sacrificed 
15–30 min following lesions to allow for gliosis to occur.

Ex vivo electrophysiological recording

Ex vivo determination of photoresponse latency (PRL) 
threshold

Viral surgeries for all subjects were conducted on a cage-
by-cage basis; therefore, one subject from each cage was 
selected for collecting PRL data, while the other 3 subjects 
were used in behavioral recording experiments. Patching 
experiments to determine the PRL threshold were con-
ducted concurrently with behavioral training to ensure that 
PRL data were collected from subjects that had under-
gone a viral incubation period of similar length to behav-
ioral recording animals. This period was approximately 
3 months for all subjects. For this, subjects were deeply 
anesthetized using sodium pentobarbital (200 mg/kg; IP 
injection), and transcardially perfused using 20 mL of 
ice-cold artificial cerebrospinal fluid (aCSF) modified as 
follows to preserve brain sections: (composition in mM) 
NaCl 87, KCl 2.5, NaH2PO4*H20 1.3, MgCl2*6H2O 7, 
NaHCO3 25, sucrose 75, ascorbate 5, CaCl2*2H2O 0.5 in 
ddH20 (osmolarity 322–326 mOsm, pH 7.20–7.30, satu-
rated with carbogen gas 95% oxygen, 5% carbon diox-
ide). The subject’s head was removed, and the brain rap-
idly extracted. The brain was mounted on the vibratome 
stage using adhesive and placed in the slicing chamber 
submerged in partially frozen modified aCSF (Leica 
VT1000S, Leica Microsystems, Germany). Coronal sec-
tions measuring 300um were taken along the extent of 
the MGN (AP: ~ 2.5–3.5 mm posterior to bregma). Brain 
slices were placed in a recovery chamber at 32 °C con-
taining carbogen-saturated aCSF (composition in mM: 
NaCl 126, KCl 2.5, NaH2PO4*H20 1.25, MgCl2*6H2O 
1, NaHCO3 26, glucose 10, CaCl2*H2O 2.4 in ddH20; 
osmolarity 298–301 mOsm; pH 7.28–7.32) for at least 
1 h prior to initiation of recording. Following recovery, 
slices were transferred to the electrophysiological record-
ing chamber.
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Whole‑cell patch‑clamp recordings

Slices were restrained in the recording chamber using a 
platinum and nylon “harp” and were continuously perfused 
with oxygenated aCSF (2 mL/min; 30–32 °C). Slices were 
imaged through a × 40 water-immersion objective using an 
IR-DIC enabled upright microscope (Scientifica, Uckfield, 
UK) equipped with a QImaging Retiga EXi camera (Q Imag-
ing, Canada). Whole-cell patch-clamp recordings were taken 
using borosilicate glass capillaries (World Precision Instru-
ments, Hertfordshire, UK), pulled on a P-97 puller (Sutter 
Instrument, CA, USA). When filled within an internal solu-
tion, the resulting recording pipettes had resistance values 
of 4–6 MΩ (internal solution composition in mM: potas-
sium gluconate 125, NaCl 10, HEPES 20, MgATP 3, and 
0.1% neurobiotin, in ddH20; osmolarity 287 mOsm; pH 7.3). 
Whole-cell patch-clamp recordings were made from ChR2-
eYFP expressing MGN cells using pClamp 10.4 software 
(Molecular Devices, CA, USA). Analog signals were ampli-
fied using a Multiclamp 700B amplifier, filtered at 3 kHz, 
and digitized at 10 kHz with a Digidata 1550 (Molecular 
Devices, CA, USA). ChR2-eYFP expressing BLA-project-
ing cells in the MGN were located by illuminating the slice 
briefly with 470 nm light (pE-100; CoolLed, Andover, UK). 
In order to confirm ChR2 expression in the recorded cell, a 
sustained 1 s pulse of blue light was delivered while record-
ing from the cell in voltage-clamp mode. If sustained inward 
current was observed, the cell was determined to express 
ChR2-eYFP. Cells were then exposed to 5 ms pulses of blue 
light (10 pulses delivered at 1 Hz, every 60 s) while record-
ing in current-clamp mode to observe light-evoked spiking 
behavior. Data were analyzed post hoc using Clampfit 1.4 
software (Molecular Devices, Sunnyvale, CA). Latency to 
spike was determined for each cell by taking the mean time 
from pulse onset to spike (peak) for 30 responses to blue 
light pulses. Because no spiking response was observed in 
non-expressing neighboring cells, the PRL was set at 10 ms 
(Fig. 2h).

Histology and storage

Following the conclusion of recording experiments subjects 
were anesthetized using 90 mg/kg sodium pentobarbital 
and perfused transcardially with 20 mL of ice-cold lactated 
Ringer’s solution, followed by 20 mL ice-cold paraformalde-
hyde (4%; PFA) in phosphate-buffered saline (PBS). Brains 
were extracted and placed in 4% PFA for 24 h. The tissue 
was then equilibrated in a cryo-protectant solution (30% 
sucrose in PBS, w/v). Coronal slices measuring 60um were 
taken from the tissue using a sliding microtome (HM430; 
Thermo Fisher Scientific, Waltham, MA), and stored in PBS 
at 4 °C.

Immunohistochemistry

Sectioned tissue was incubated in 1x PBS solution con-
taining 3% Donkey serum in 0.03% Triton for 1 h at room 
temperature. Sections were then washed using 1xPBS for 
10 min, followed by incubation in a solution containing a 
DNA-specific fluorescent probe (DAPI; 4',6-diamidino-
2-phenylindole; 1:50,000 in PBS). Sections were then 
washed in 1x PBS 4 times, 10 min each. Sections were then 
mounted on slides for imaging using PVA-DABCO (Sigma-
Aldrich; St. Louis, MO).

Confocal or epifluorescence imaging

Stained tissue slices were imaged using either a confocal 
laser scanning microscope (Olympus FV1000), or an epiflu-
orescence microscope (Keyence BZ-X). Images were taken 
using a 10 × objective lens. Following imaging, the images 
were evaluated to determine the location of viral expression 
as seen via fluorescence from the ChR2-eYFP. Recording 
sites were located using electrolytic lesion locations, which 
were identified using auto fluorescence produced by gliosis. 
In some cases, lesions or electrode extraction created holes 
in the tissues at the recording sites making probe location 
readily identifiable. Data from animals with wires outside 
the regions of interest were excluded from the analysis. If 
lesions were correctly located in only one region, then only 
data from that region were used for that animal. Following 
imaging, slides were stored in slide boxes at room tempera-
ture in case additional imaging or validation was necessary.

Pavlovian behavioral training paradigms

All subjects were placed on a food regulation schedule prior 
to the initiation of Pavlovian training (4 g/day standard 
mouse chow, ad libitum access to water). For this Pavlovian 
paradigm, a highly palatable Ensure nutrient drink was the 
rewarding unconditioned stimulus (US), and a mildly aver-
sive airpuff to the subject’s face (~ 25 psi, 75 ms) acted as 
the punishing US. On the first day of training, subjects were 
placed in the experimental apparatus, using head fixation 
via a small aluminum headbar held in place by a modified 
stereotaxic holder. The initial training session was used to 
expose subjects to reward-related stimuli only while the 
infrared (IR) beam break used for lick detection was manu-
ally calibrated. In cases where subjects demonstrated reluc-
tance in lick responding to presentations of the rewarding 
US, the experimenter would deliver US rewards directly 
into the subjects’ mouth. Following equipment calibration, 
subjects underwent Acquisition training before proceeding 
to Discrimination trials. Acquisition training consisted of 
interspersed conditioned stimuli (CS) and unconditioned 
stimuli (US) presentation of reward-association trials and 
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free reward trials to encourage licking. Reward association 
trials consisted of a presentation of a 4 s pure tone (8.5 kHz 
and 14 kHz, counterbalanced). This was followed by a vari-
able (jitter) delay of 1–1.5 s whereupon US delivery took 
place. CSs were separated by a 15 ± 4 s inter-trial interval 
(ITI). The number of trials presented in each training ses-
sion was dictated by the experimenter, who monitored the 
subject’s performance to infer motivation level. During the 
first acquisition session, if subjects exhibited a low rate of 
responding, the experimenter in some cases would also pre-
sent free-reward trials during the session (these trials are not 
included in the later analysis). Behavioral criteria determin-
ing subject performance are described below in the “Statisti-
cal methods” section. Subjects meeting acquisition criteria 
begin discrimination training the following day. Discrimina-
tion sessions were comprised of 75 reward trials and 35 pun-
ishment trials (4 s, 65 dB, 20 s ± 4 s ITI) and lasted 1–1.5 h 
in length. The trial structure included jitter in US presenta-
tion timing following CS onset but before US delivery: in 
this case between 1 s and 1.5 s. If subjects did not perform 
correct anticipatory lick responses to > 50% or anticipatory 
licking trials, learning was deemed unsuccessful.

Statistical methods

All computation was performed in MATLAB, unless explic-
itly stated otherwise.

Determining parameters for statistical comparison of ITI vs. 
anticipatory licking

To determine how many trials should be evaluated for statis-
tical comparison between licking behavior during ITI peri-
ods and licking during anticipatory period, bootstrapping 
was performed on pilot behavioral data (n = 6 mice). The 
number of trials necessary to find a significant result for the 
effect size of licking differences observed was calculated by 
finding the probability of identifying a significant result for 
1 through 50 trial presentations. Significance was defined 
as having Student’s t test with a p-value < 0.05. Each condi-
tion was iterated 1000 times by randomly sampling the data. 
Under these conditions, we could detect a significant differ-
ence present in the data 93% of the time with 15 trials. By 20 
trial presentations, the detection probability would be 97%.

Statistical determination of learning behavior 
for experimental data

To measure behavioral performance during acquisition, the 
licking behavior during the anticipatory period (the time 
between CS onset and US delivery) was statistically com-
pared to licking behavior during a period equal in length dur-
ing the ITI period preceding each CS. If the Student’s t test 

returned a significant result (p < 0.01) and the raw number 
of licks during the anticipatory period was greater on aver-
age, the animal was determined to have successfully learned 
the CS-US association. This test was performed twice for 
each session using the first 20 and last 20 trials within the 
session. The number of trials (20) was determined using 
the bootstrapping method described above. Animals meet-
ing the criteria moved into discrimination training in the 
next session. Discrimination sessions randomly presented 
CSs consisting of Ensure reward (CS-E) and airpuff pun-
ishment (CS-A) trials. To measure behavioral performance 
during discrimination sessions, a statistical comparison of 
the difference scores for licking behavior during ITI and 
anticipatory periods was made; difference scores allowed 
licking behavior to be compared across protocols as the 
baseline licking behavior varied between the two protocols. 
The difference scores were calculated by subtracting the raw 
number of licks during the anticipatory period from the raw 
number of licks during a period of equal length taken from 
the preceding ITI period for each trial. A Student’s t test 
was used to compare the difference scores for CS-E and 
CS-A trials. This test was carried out three times for each 
session, using the first 20 trials, the last 20 trials, and a set 
of 20 randomly selected trials. If the test returned a result 
of p < 0.01 and the raw number of licks for the rewarding 
CS-E trials was greater than the raw number of licks for the 
punishing CS-A trials on any of the three tests, the subject 
was determined to have successfully discriminated between 
the reward and punishment associated CSs.

Statistical determination of differences of task 
responsiveness and multimodal encoding within MGN 
and BLA

To determine cell responsiveness, a Wilcoxon signed rank-
sum test was applied using an experimental window of 
0–100 ms from stimulus onset and baseline windows 3 s 
from the preceding ITI period; the cell was deemed respon-
sive to stimulus if resulting p < 0.01. To determine whether 
the cell was excited to or inhibited by cue, we computed the 
z-score response for baseline and experimental windows; 
the cell was deemed excited if the average z-score response 
was greater than 0 (inhibited if less than 0). To determine 
the proportional differences between categories (CS, US, 
both, none), chi-squared tests were applied; where data vio-
lated the assumptions of the chi-squared test due to low n 
(n < 5), Fisher’s exact test was applied. To identify the higher 
proportion of cells responding to experimenter-defined cat-
egories, the Kruskal–Wallis test was used. If results were 
significant, Wilcoxon’s rank-sum post hoc tests were per-
formed pairwise, and Bonferroni’s correction was applied 
to identify which category was significantly higher.
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Calculation of neural trajectories for time‑averaged data

To explore the neuronal dynamics during reward and pun-
ishment stimuli, peri-stimulus time histograms (PSTHs) 
for each neuronal unit were computed at 50 ms bin width. 
PSTHs were separated according to stimulus (CS-E or 
CS-A) and cell type (MGN/BLA). We performed principal 
component analysis (PCA) to find the representative features 
for each cell type. Data were smoothed using a Gaussian-
weighted moving average within a smoothing window of 25 
previous bins. The first two PCs captured 77% variance in 
the MGN cells and 46% in the BLA.

Also, the dynamics depending on whether the behavior 
was correct or incorrect for each stimulus were explored, 
yielding 4 conditions for each cell type. The four condi-
tions are defined as hit (correct licking behavior dur-
ing CS-E); miss (not licking during CS-E); false alarm 
(licking during CS-A); and correct rejection (not lick-
ing during CS-A), where licking is measured during the 
anticipatory period, e.g., after the cue and prior to stimu-
lus delivery. Dimensionality reduction was performed as 
above within a smoothing window consisting of 10 previ-
ous bins. These trajectories were projected on 3D space 
using the first three principal components, PC1, PC2, 
and PC3. To determine the mean length of trajectories, 
a leave-one-out approach was used; the length was com-
puted k times, where k is the number of subjects, then 
averaged across each group. To compute the distance 
between trajectories, the same leave-one-out approach 
was taken, this time computing the distance between any 
two trajectories and averaging across the groups.

Functional hierarchical clustering algorithm for phasic 
responses of trial‑averaged data

Prior to clustering, data with NaN values were removed 
(n = 1). The trial-averaged response (a.k.a. PSTH) was com-
puted using 100 ms bin widths. Normalization consisted of 
z-scores, which were calculated using the mean and standard 
deviation during the baseline period (− 2 s to cue onset) indi-
vidually for each neuron. Finally, the data were smoothed 
along the time dimension using a Gaussian-weighted mov-
ing average within a smoothing window of 10 prior bins. 
To compare reward and punishment trials, data were con-
catenated to calculate universal clusters, allowing for com-
parisons between and within CS-E and CS-A protocols. A 
hierarchical cluster tree was generated using Ward’s method, 
which uses inner squared distance to determine hierarchy 
using a Euclidean distance metric. A cutoff threshold value 
of 0.23 of the max value in the set was selected and used 
to determine clusters. Clusters containing less than 3 cells 
were discarded (for Ensure/airpuff: 7 cells did not meet 
cluster criteria; for hit/miss/false alarm/correct rejection: 4 

cells did not meet cluster criteria). These clusters were then 
divided according to the different brain regions of interest, 
MGN non-phototagged, MGN → BLA projections, out-of-
network BLA, and in-network BLA. Heatmaps plotted for 
each region represent the smoothed z-score input data; clus-
ters for each region are color-coded based on the original 
cluster tree. An identical approach was taken to preprocess 
hit/miss/false alarm/correct rejection data, concatenating 
each category appropriately by cell type; the same cluster-
ing parameters were applied.

Statistical analysis to measure clusters within each neural 
region

To determine if one cluster in the MGN contained sig-
nificantly more cells than other clusters, a leave-one-out 
approach was taken; the number of cells in each cluster was 
computed k times, each time leaving out one subject. A 
Kruskal–Wallis ANOVA was applied to the leave-one-out 
data to determine if there was a difference across all the 
clusters. If the ANOVA result was statistically significant, 
post hoc Wilcoxon’s rank-sum tests were applied to the 
following subset of pairs: the cluster with the highest mean 
number of cells was compared to other clusters. To correct 
for multiple tests, the Bonferroni correction was applied by 
adjusting the significance level (alpha = 0.05), dividing by 
the number of pairs being tested. This same approach was 
used for BLA data.

Functional hierarchical clustering algorithm for tonic 
changes to baseline periods

To identify tonic changes occurring during baseline or ITI 
periods, the following approach was taken: for each neuron 
and stimulus condition, three periods of interest were (1) an 
ITI baseline from − 3 to − 2 s prior to cue onset, (2) a pre-
cue region from − 1 s prior to cue onset to cue onset, and 
(3) a response window from cue onset to 1 s past cue onset. 
For each time window, the number of spikes per trial was 
summed. This yielded (1) baseline spike count per trial, (2) 
pre-cue spike count, and (3) the response period spike for each 
neuron and stimulus condition. To normalize, the mean and 
standard deviations of the baseline period were subtracted 
from the trial-averaged spike counts for both pre-cue and post-
cue and for both CS-E and CS-A. Data were then smoothed 
over trials using a Gaussian-weighted moving average with a 
smoothing factor of 0.85. The resulting four z-scored datasets 
were concatenated prior to clustering. Hierarchical clustering 
was performed using Ward’s method on a Euclidean distance 
metric and the threshold set at 20% of the max value. Clusters 
containing less than 3 cells were discarded (for trial-based 
clusters: 5 cells did not meet cluster criteria). To compute 
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whether a change to the firing rate occurred during the pre-cue 
period, data for each cluster were plotted as spike count by 
trial number. A regression line was fit to the spike count data. 
If the confidence intervals around the slope of the regression 
line did not contain 0, then a change to the baseline firing rate 
was determined to have occurred from the first trial to the last 
during the pre-cue period.

Results

Experimental paradigm

To achieve robust discriminative learning, we employed a 
two-stage Pavlovian paradigm that allowed mice to acquire 
a reward association (acquisition phase) before introduc-
ing punishing stimuli (discrimination phase) to ensure 
robust and consistent learning across animals. Discrimi-
nation sessions randomly presented conditioned stimuli 
(CS) consisting of Ensure reward (CS-E) and airpuff pun-
ishment (CS-A) trials, pairing each with the appropriate 
tonal unconditioned stimuli (4 s, 65 dB, 20 s ± 4 s ITI). US 
delivery was randomly jittered during an interval of 1 to 
1.5 s after CS onset to provide adequate time for subjects 
to exhibit reliable anticipatory licking throughout the first 
second of tone onset. The anticipatory licking period was 
defined as the period following CS onset and preceding 
US onset (yellow region in Fig. 1a). The correct behavio-
ral response to CS-E was anticipatory licking while that 
of CS-A was lick omission. Discrimination learning was 
considered successful when subjects demonstrated a sta-
tistically significant difference between the licking scores 
across reward and punishment trials, as well as success 
in the anticipatory licking control during a single session 
(Fig. 1b). Lick behavior was recorded using an infrared 
(IR) beam break that was calibrated to each subject during 
Acquisition phase training (Fig. 1c). Data (N = 12) were 
bootstrapped to determine that 20 trial presentations were 
sufficient to correctly determine significance in behavioral 
data (Fig. 1d).

Optogenetic stimulation allows identification 
of four distinct neural populations of interest: MGN 
non‑phototagged, MGN → BLA, out‑of‑network 
BLA, and in‑network BLA

To test the hypothesis that medial geniculate nucleus of the 
thalamus (MGN) neurons that project to basolateral amyg-
dala (BLA) exhibit differences from MGN neurons during 
learning, we employed an optogenetic technique to identify 
specific subpopulations in the MGN and the BLA (Lima 
et al. 2009). We used a dual virus recombination approach 
to selectively express Channelrhodopsin-2 (ChR2) fused to 

a reporter, an enhanced yellow fluorescent protein (eYFP) 
in a single circuit: MGN neurons that project to the BLA 
(Fig. 2a). By injecting an anterogradely traveling virus 
carrying a cre-dependent ChR2 into the upstream brain 
region (MGN), and a retrogradely traveling virus express-
ing cre-recombinase in the downstream region (BLA), only 
cells containing both viruses will express ChR2-eYFP, and 
thereby become light-sensitive and fluorescently labeled 
through cre-mediated specificity (Beyeler et  al. 2016). 
Because the retrogradely traveling viruses are chosen for 
their propensity to enter neurons through axon terminals, 
viral recombination preferentially occurs in cells terminat-
ing in the downstream injection site (Fenno et al. 2011; Tye 
and Deisseroth 2012). These cells can then be identified as 
expressing ChR2-eYFP by recording the light-evoked spik-
ing, a method known as phototagging. Furthermore, this 
technique can be combined with electrophysiological record-
ing in multiple brain regions to identify other downstream 
neurons that are in the same connected network. Thus, by 
shining light into the upstream brain region and evoking 
responses there, we can also capture downstream responses; 
we then identify cells projecting to a downstream region by 
defining a short-latency response window to capture those 
cells firing in response to the light (Fig. 2a, b).

Thus, the proposed circuit model represents the connectivity 
structure between the MGN and the BLA; it accounts for both 
the MGN neurons directly connected with the BLA identified 
via phototagging (MGN → BLA) as well as those polysynaptic 
connections for which only the BLA projections (in-network) 
are identifiable (Fig. 2b). Representative images of the lesion 
and viral expression showed that neurons achieved robust 
expression of ChR2 in the regions of interest (Fig. 2c). In vivo 
neurons express ChR2 fire in response to blue light while neigh-
boring neurons do not; thus, we can selectively stimulate cells 
in the MGN and evoke spikes in the downstream cells receiving 
input via the monosynaptic or polysynaptic connections (All-
sop et al. 2018; Beyeler et al. 2018, 2016; Burgos-Robles et al. 
2017; Nieh et al. 2015; Senn et al. 2014) (Fig. 2d).

To validate our approach phototagging MGN → BLA 
projectors during single unit recordings, a photoresponse 
latency threshold was determined based on ex vivo whole-
cell patch-clamp recordings (N = 3 mice; n = 10 non-express-
ing neighbors; n = 3 ChR2-eYFP expressing cells). Robust 
inward currents were observed in ChR2-expressing MGN 
cells during voltage-clamp recordings (Fig. 2f), as well as 
short latency evoked spikes while recording in current-
clamp mode (Fig. 2g). Contrastingly, of the non-expressing 
neighboring cells recorded, no short latency light-evoked 
responses were observed (Fig. 2e–g). This suggests the 
BLA-projecting subpopulation of the MGN does not have 
robust local recurrent connections. Having successfully vali-
dated the identification of the MGN → BLA projections via 
optogenetic stimulation, we recorded in vivo neural activity 
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simultaneously in the MGN and the BLA using multiarray 
electrodes during behavioral tasks (Supplemental Fig. 1).

MGN neurons predominantly code for arousal 
while BLA neurons code for both arousal 
and valence

To gain understanding about the order of processes imple-
mented across the thalamoamgydala circuit, we examined 
neural responses of MGN and BLA neurons during the 
Pavlovian discrimination task described above. To compare 
across subjects, data were normalized using z-score trans-
formation and plotted on two different timescales (Fig. 3a, 

b). The responses to CS-E were notably different between 
brain regions. All MGN cells exhibited a strong excitatory 
response to the reward cue. In contrast, BLA cells showed an 
excitatory phasic response of short duration (~ 150 ms) then 
appeared to cease firing for the duration of the cue (Fig. 3a). 
Because we were primarily interested in the learned associa-
tion, these analyses are limited to the first second of the cue, 
prior to delivery of the US. No significant differences were 
found between the average response during the first second 
of the MGN phototagged and non-phototagged cells to either 
stimulus (CS-E: Wilcoxon’s rank-sum test, p = 0.89; CS-A: 
Wilcoxon’s rank-sum test, p = 0.75). Similarly, among BLA 
neurons, no significant differences were found between the 
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Fig. 1  Behavioral lick response shows clear distinction between 
stimuli in experimental paradigm. a Schematic depiction of Pavlo-
vian discrimination paradigm. Headfixed animals were trained to 
discriminate between two tones (conditioned stimulus, 8.5  kHz and 
14 kHz); each tone was paired with a reward or punishment (Ensure 
or airpuff, unconditioned stimulus) and counterbalanced across sub-
jects. The series of colored bars shows pseudorandom trial order for 
reward (CS-E) and punishment (CS-A) experiments. The number of 
presentations per session is trial-matched and comprised of 75 reward 
trials and 35 punishment trials (4 s, 65 dB tone, 20 s ± 4 s ITI). Detail 
shows schematic of time windows used for comparing ITI licking 
(gray) and anticipatory licking (yellow) for punishment experimental 
group. ITI window used was duration-matched to jittered anticipatory 
period for each trial. b Representative licking response to presenta-
tions of reward-associated (top left) and punishment-associated CSs 
(top right) taken from one subject for each experiment. Gray shading 

represents 4 s tone duration; black indicates licks for given time and 
trial. Mean normalized lick response with error for all subjects within 
each experimental group shown below. As expected with learned 
associations, licking behavior during reward trials (blue) is much 
higher than during punishment trials (orange). c Representative volt-
age trace (blue), from IR beam to detect licks. Individual lick events, 
indicated by red dots, show where the voltage drops below specified 
threshold. d Bootstrapping of behavioral data was used to deter-
mine the number of trials needed for sufficiently powered statistical 
analysis for the effect size of licking behavior during the anticipatory 
period vs. an ITI period of equal length. Subject data was taken from 
sessions of highest performance. Display shows the percentage out of 
1000 samples that correctly detected a statistically significant differ-
ence (p < 0.05) between the two licking periods. The resulting prob-
ability is above 90% using 15 trial presentations and above 98% using 
20 trial presentations
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in-network and out-of-network BLA neurons in response to 
either stimulus (CS-E: Wilcoxon’s rank-sum test, p = 0.54; 
CS-A: Wilcoxon’s rank-sum test, p = 0.30).

We found that although the MGN → BLA subpopula-
tion had a trend toward higher levels of task responsive-
ness to both CS and US compared to the non-phototagged 
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MGN population, this difference was not significant at the 
5% level (Χ2 test, p < 0.07; Fig. 3c). However, significantly 
more BLA in-network cells responded to both CS and US 
compared to the out-of-network population (Fisher’s exact 
test, ***p < 0.005).

To further characterize the roles the MGN and BLA 
play in the formation of associative learning, we ana-
lyzed  the overall encoding strength in both regions with 
respect to both reward- and punishment-associated cues. 
To provide a categorical way of characterizing the entire 
population, neuronal response profiles were defined a pri-
ori as inhibitory or excitatory in response to reward and 
punishment CSs (Fig. 3d). Of the cue-responsive neurons 
in the MGN, significantly more cells are excited to both 
CSs (E + , A + category) than almost all other categories 
(Fig. 3d inset: Kruskal–Wallis’ test, ****p = 6.1602e − 07, 
E + A + post hoc comparisons to E + A − ****p < 0.0001, 
E + n.s., E − A + ****p < 0.0001, E − A − ***p < 0.003, 
E − ****p < 0.0002, A + ****p < 0.0001, A − ***p < 0.0001). 
However, no significant differences were found between cat-
egories in the BLA, after correcting for multiple comparisons 
(Fig. 3d inset: Kruskal–Wallis’ test *p = 0.027; E − A − post 
hoc comparisons to E + A + , n.s., p = 0.04; E + A − , n.s., 
p = 0.03; E + , n.s., p = 0.1; E–A + , n.s., p = 0.02; E − , n.s., 

p = 0.07; A + , n.s., p = 0.02; A − , n.s., p = 0.02). Moreover, 
there is a significantly higher excitatory response profile 
in the MGN to both cues compared to the BLA (Fisher’s 
exact test, E + A + *** p = 0.0036). In contrast, proportion-
ally more BLA neurons have an inhibitory response to both 
reward and punishment than MGN neurons (Fisher’s exact 
test, E − A − ****p = 0.0001).

Notably, the highest proportion of phototagged MGN 
cells across the population are contained in two response 
categories (E + , A + and E − , A −) that do not discriminate 
between valence; they are excited to both CSs or inhibited 
to both. This suggests information relayed to the amygdala 
from the auditory thalamus is largely salience or arousal 
rather than assigning valence. Taken together, these data are 
consistent with the notion that the thalamus is not assigning 
valence to the information, merely relaying its salience to 
the amygdala where valence is assigned.

To further dissect neural responses within our model 
of circuit connectivity, we explored the breakdown of 
responses across the subpopulations to each experimenter-
defined a priori category (Fig. 3d, e). Despite the small sam-
ple size within categories, we observed the following points 
of interest: there is no difference in the proportion across the 
non-phototagged and phototagged MGN neurons in either 
the E + , A + nor in E − , A − categories (E + A + : Χ2 test, 
n.s.; E − A − : Fisher’s exact test, n.s.). However, in the BLA, 
there is a significantly smaller proportion of in-network cells 
in the E − A − category compared to the out-of-network pop-
ulation (Fisher’s exact test, *p = 0.048). It is also interesting 
that the E + A + category only appears in in-network cells 
and is absent in the out-of-network population. Despite the 
low number of neurons, it appears that the in-network BLA 
population is richly representing both salience and valence.

Hierarchical clustering of neural responses 
to reward and punishment highlights greater 
variety of response profiles in MGN compared 
to BLA

To explore the dynamic neural response to stimuli across 
brain regions, we plotted neural trajectories, which show 
how the response evolves through time in reduced dimen-
sional space (Fig. 4a, b). The responses to each stimulus 
in the MGN population start off close together, then travel 
in separate paths following cue onset. While trajectories in 
the MGN have a roughly circular shape, CS-A returns to 
nearly the same starting point while CS-E does not complete 
the circle, ending farther away from the baseline starting 
point. This indicates a sustained difference from baseline 
firing in response to reward in the MGN. Here, the CS-A 
trajectory is longer than the CS-E trajectory indicative of a 
more dynamic response to the punishment cue (Wilcoxon’s 
rank-sum test, ***p = 0.0029). The average distance between 

Fig. 2  Phototagging viral approach and neural readout, ex  vivo 
evaluation of recurrent excitation and determination of photore-
sponse latency threshold. a Schematic depiction of combination viral 
approach for circuit-specific expression of ChR2-eYFP in BLA-pro-
jecting cells in MGN. Injection volume: 250 μL MGN, 400 μL BLA. 
Schematic depiction of optrode and electrode placements within 
MGN and electrode-only placements within the BLA for collecting 
single-unit electrophysiology data from both regions simultaneously. 
b Schematic depiction of the four neural populations of interest: 
MGN → BLA projectors, unidentified MGN, in-network BLA, and 
unidentified BLA. Solid connections represent monosynaptic con-
nections, whereas dashed connections represent synaptic connections 
including an unknown number of cells. c Representative images of 
combinatorial viral expression in MGN and BLA, as well as lesion 
sites in red. Illustrated optical fiber placement is approximate. d Rep-
resentative photo-responses to blue light excitation (473  nm wave-
length) for a phototagged cell in MGN, an unidentified MGN cell, 
an in-network BLA cell, and an out-of-network BLA cell. e Confocal 
images of neurobiotin-labeled neighboring ChR2-eYFP expressing 
and non-expressing cells in the MGN, following ex vivo electrophysi-
ology. Overlay shows colocalization of ChR2-eYFP and neurobio-
tin in one cell (white marker) but not the neighboring cell (yellow 
marker). f Example traces, recorded in voltage-clamp mode, from 
ChR2-eYFP expressing and non-expressing cells during 1  s pulse 
of 473 nm blue light. A ChR2-mediated sustained inward current is 
observed in the ChR2-expressing, but not in the non-expressing cell. 
A total of 13 cells were recorded from (n = 10, non-expressing neigh-
bors; n = 3, ChR2-eYFP expressing cells). g Example current clamp 
recordings showing blue light-evoked ChR2-mediated spiking activ-
ity in the expressing cell but no response in the non-expressing cell. 
h Latency to action potential peak, from onset of light stimulation, as 
a function of light power for expressing cells. Each cell’s latency to 
peak was evaluated at 6 light power levels (0.2, 1.2, 2.1, 4.18, 7.38, 
and 12.12 mW/mm2)

◂
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the two trajectories was measured over time; the distance, 
averaged across 1 s baseline (light purple), is significantly 
higher from the distance averaged 1 s after cue onset (dark 
purple) indicating that there are divergent dynamics in the 
MGN that occur following the cue (Fig. 4a inset: Wilcoxon’s 
rank-sum test, ****p = 5.3e − 19).

In the BLA, again we find the total length of the punishment 
trajectory is significantly longer than reward, mirroring a more 
complex dynamic response in the BLA to punishment (Wil-
coxon’s rank-sum test, **p = 0.0152). The distance between 

trajectories increases following cue onset and there is a pro-
nounced difference in the average distance over a 1 s baseline 
window compared to the 1 s response window following cue 
(Fig. 4b inset, Wilcoxon’s rank-sum, ****p = 5.3650e − 19).

We next performed hierarchical clustering to investi-
gate neuronal responses without a priori determination of 
response type groups. This exploratory technique can reveal 
underlying structures that yield clues as to how these data 
are organized; the resulting clusters are evaluated for simi-
larities and differences within and between experimental 
groups and brain regions. These resulting categories offer 
an alternative grouping than the experimenter-determined 
categories in the previous section. Hierarchical clustering 
performed on 241 neurons aligned at cue onset over a 6 s 
time interval for each protocol, yielded eight functionally 
distinct clusters (Fig. 4c, d).

When broken down by cell type and subpopulation 
(Fig.  4e–h), only five of eight clusters were common 
to both brain regions (#2 orange, #5 red, #6 yellow, #7 
green, #8 pink). The remaining three clusters (#1 purple, 
#3 blue, and #4 light blue) represent strong, excitatory 
responses; although these occur only in the MGN, interest-
ingly, all three are present in both phototagged and non-
phototagged populations (Fig. 4e, g). Cluster #7 (green) 
is the most prevalent in the MGN (Kruskal–Wallis’ test, 
****p = 4.3344e − 17, Wilcoxon’s rank-sum post hoc tests 
comparing #7 cluster to #1 (purple) ***p = 0.00021; #2 
(orange) p = 0.00033; #3 (dark blue) **p = 0.00031; #4 
(light blue) **p = 0.00029; #5 (red) **p = 0.00031; #6 (yel-
low) **p = 0.00028; #8 (pink) p = 0.00032). In the BLA, 
cluster #8 (pink) is the most prevalent response profile 
(Kruskal–Wallis’ test, ****p = 2.2658e − 17, Wilcoxon’s 
rank-sum post hoc tests comparing cluster #8 (pink) to #2 
(orange) **p = 0.00018; #5 (red) **p = 0.00022; #6 (yellow) 
**p = 0.00012; #7 (green) **p = 0.00025), showing a modest 
excitatory response to both CSs. From this analysis, we see 
a variety of responses specifically represented in the MGN 
phototagged neurons that are providing information directly 
to the BLA; yet the in-network BLA does not exhibit evi-
dence of similar response profiles.

MGN neurons as a population display more diversity 
in response profile compared with BLA neurons

To investigate the neural dynamics during specific signal 
detection responses, we examined the normalized neural 
activity in a reduced dimensional space using principal com-
ponent analysis to visualize the neural trajectories (Fig. 5a, 
b). Four conditions were defined using the licking behav-
ioral responses to protocol stimuli, yielding the following 
combinations: hit (licking during CS-E), miss (not licking 
during CS-E), false alarm (licking during CS-A), and cor-
rect rejection (not licking during CS-A). Neural trajectories 

Fig. 3  BLA-projecting MGN neurons are more likely to encode 
multimodal stimuli and be task-responsive than overall MGN popu-
lation. a Z-score population responses to Ensure and airpuff pro-
tocols over 6 s time window. Gray shaded area depicts 4 s CS tone, 
triangular markers depict peak response for each neural population. 
b Z-score population response over 1  s time window to each proto-
col for the following population of neurons: MGN non-phototagged, 
MGN → BLA, out-of-network BLA, and in-network BLA. Shad-
ing shows SEM. c Breakdown by response category of each neu-
ral population during discrimination task. The largest percentage 
of cells in MGN cells responded to both the CS and the US; there 
was not a significant difference in proportion between phototagged 
and non-phototagged populations responding to both CSs (Χ2 test, 
p = 0.073). However, a significantly higher proportion of in-network 
cells responded to both US and CS compared to out-of-network cells 
(Fisher’s exact test, p = 0.0004). Cells were defined as responding 
to a stimulus if p < 0.01 for a Wilcoxon signed rank sum test, using 
experimental window = 0–100  ms from stimulus onset and a base-
line window = 3  s taken from preceding ITI period. d Decision tree 
represents a priori experimenter-defined categorization of single-unit 
excitatory ( +) and inhibitory (–) response to Ensure (E) reward and 
airpuff (A) punishment-associated cue onsets. Population distribu-
tions represent categorical response for each cell type. Donut plots on 
left represent the breakdown of each cell population for tree catego-
ries defined to the right. Overall, the MGN contains a higher propor-
tion of E + A + responding cells than the BLA, while BLA contains 
a higher proportion of E-A- responding cells (Fisher’s exact test: for 
E + A + ***p = 0.0036; E − A − ****p = 0.0001). Within the MGN, 
significantly more cells respond as E + A + than other categories 
(Kruskal–Wallis’ test, ****p = 6.1602e − 07, E + A + post hoc com-
parisons to E + A − ****p < 0.0001, E + n.s., E − A + ****p < 0.0001, 
E − A − ***p < 0.003, E − ****p < 0.0002, A + ****p < 0.0001, 
A − ****p < 0.0001). Within the BLA, the seemingly strong asym-
metrical response to E − A − is not significantly different from other 
categories (Kruskal–Wallis’ test p < 0.03; E − A − post hoc compari-
sons to other categories were not significantly different). A cell is 
determined as responding to reward or punishment-associated CS if 
p < 0.01, signed-rank sum. A z-score threshold of zero was used to 
determine if the response was excitation or inhibition. e Donut plots 
represent the breakdown of each cell population for tree categories 
defined above; numbers represent raw cell counts. The largest num-
ber of cells across the MGN were excited by both stimuli. Similarly, 
most MGN → BLA projections across the population are excited by 
both stimuli and there is not a significant difference in proportion of 
E + A + or E − A − phototagged cells compared to non-phototagged 
cells (E + A + : Χ2 test, n.s.; E − A − : Fisher’s exact test, n.s.). In 
contrast, out-of-network BLA cells do not include the E + , A + cat-
egory at all (it is fully contained in the in-network subpopulation) 
while the in-network subpopulation contains proportionally fewer 
E − A − responding cells compared to the overall BLA (Fisher’s exact 
test, *p = 0.048). Interestingly, the in-network population also shows a 
greater variety of categories than the phototagged subpopulation
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within the MGN are well organized and smoothly varying 
according to condition, with false alarm, miss, and hit trac-
ing similar patterns with slightly different lengths. The cor-
rect rejection population response travels along a different 
plane and is longer than the other three (Kruskal–Wallis’ 
test ****p < 2e-07; Wilcoxon’s rank-sum post hoc tests: CR 
to hit, ***p = 4.7768e − 04; CR to miss, ***p = 3.6585e-
05; CR to FA, ***p = 6.0058e − 05). Correct rejection is 
farthest from the hit trajectory compared to the distance to 

miss or to false alarm (Kruskal–Wallis’ test, p = 9.11e − 05: 
Wilcoxon’s rank-sum post hoc tests hit-to-CR compared to 
hit-to-miss p = 0.0058; hit-to-FA, p = 0.0086; CR-to-miss, 
n.s.; CR-to-FA, n.s.; miss-to-FA, p = 0.0013). In the BLA, 
trajectory lengths are not significantly different when cor-
rected for multiple comparisons (Kruskal–Wallis’ test, 
*p = 0.02; Wilcoxon’s rank-sum tests, FA to Hit, p = 0.0931, 
FA to CR, p = 0.026, FA to miss, p = 0.026). The distance 
between false alarm and hit categories was greater than other 
pairings (Kruskal–Wallis’ test, p = 1.11e − 05; Wilcoxon’s 
rank-sum post hoc tests compared hit-to-FA distances to: 
hit-to-CR, n.s.; hit-to-miss, n.s.; CR-to-miss, p = 0.001; 
miss-to-FA, p = 0.0047). Qualitatively, the MGN appears to 
respond differently to a correct rejection compared with the 
other categories. However, the BLA appears to differenti-
ate false alarms from the other three conditions, given that 
false alarm is the furthest away from the others. Although 
this false alarm trajectory was not significantly longer in the 
BLA, the dynamics are clearly different.

Performing hierarchical clustering on this set yields nine 
functional clusters (Fig. 5c, d). The MGN overall represents 
all nine clusters (Fig. 5e), of which cluster #7 (purple) is 
most prevalent (Kruskal–Wallis’ test, p = 7.29e − 19; Wil-
coxon’s rank-sum post hoc tests compare #7 (purple) to #1 
(light green) p = 0.00033; #2 (dark blue) p = 0.00032; #3 
(hot pink) p = 0.00027; #4 (yellow) p = 0.00026; #5 (moss 
green) p = 0.00021; #6 (orange) p = 0.00033; #8 (light blue) 
p = 0.00021; #9 (red) p = 3.3e − 5). However, only six of nine 
clusters are present in the phototagged MGN subpopula-
tion (Fig. 5g). In the BLA only four clusters are present 
(Fig. 5f), of which cluster #9 (red) is the most prevalent 
(Kruskal–Wallis’ test p = 3.76e − 19; Wilcoxon’s rank-sum 
post hoc tests compare #9 (red) to #6 (orange) p = 1.7e − 05; 
#7 (purple) p = 2.02e − 05; #8 (blue) p = 1.7e − 05). In both 
in-network and out-of-network populations, the same four 
clusters are present in both populations (Fig. 5f, h). It is 
interesting to note that this pattern of cluster breakdown fol-
lows a similar pattern to the previous section (Fig. 4g, h). 
There, we observed more variety in response profiles in the 
MGN with some overlap between MGN → BLA clusters. 
However, there was far less representation across clusters in 
both in-network and out-of-network BLA.

Between‑trial hierarchical clustering reveals 
that a subset of neurons exhibit tonic changes 
during learning

Switching between tonic and burst firing patterns allows 
the thalamus to relay information to the cortex for efficient 
processing (Murray Sherman 2001). We wondered whether 
there were differences in tonic and burst firing patterns 
in the thalamoamygdala circuit as well. We explored the 
inter-trial interval (ITI) for tonic changes during learning 

Fig. 4  Clustering neural responses to stimuli exhibit more varied 
response pattern in MGN than BLA. a, b Neural trajectories along 
principal components for each condition are shown for MGN and 
BLA populations. The first three principal components explain 
77% variance in MGN population. A pronounced jump follow-
ing cue onset in MGN is clearly visible in the distance between 
the trajectories (inset distance: light purple shows 1  s before cue, 
dark purple shows 1  s following cue onset; Wilcoxon’s rank sum, 
p = 5.3650e − 19). Trajectories of BLA neurons (46% variance 
explained by first 3 PC) take a more varied path through the PC plane 
and a more dynamic response profile is seen for both stimuli com-
pared to MGN. As in the MGN, there is a pronounced difference in 
the distance between trajectories following cue onset (Wilcoxon’s 
rank sum, p = 1.6063e − 18). In both regions, the CS-A trajectory is 
longer than the CS-E trajectory (inset length: MGN: Wilcoxon’s rank 
sum test, p = 0.0029; BLA: Wilcoxon’s rank sum test, p = 0.0152). 
c Dendrogram shows relationship between 8 hierarchical clusters 
of neuronal response z-scores shown in heatmap to the right. Heat-
map shows response of all cells (n = 241) to CS-E and CS-A proto-
cols; tone onset at 0  s for each condition. Color bands to the right 
of heatmap represent the 8 functional clusters output from hierar-
chical clustering (Ward’s method, Euclidean’s distance metric, cut-
off height represents 23% of maximum data value). d Mean z-score 
response to CS-E and CS-A with error for all cells contained within 
each cluster; number of neurons contained within cluster is shown 
to the right. Tone onset at 0  s for each stimulus. Scale shown on 
inset. Bar plot on the right shows the breakdown of cell type as the 
total percentage of cells within each cluster that belong to MGN 
vs BLA. e–g Heatmaps arranged by cluster of single cell z-score 
responses to onset of CS reward and CS-punishment for each cell 
type: MGN non-phototagged, phototagged MGN → BLA, out-of-
network BLA, in-network BLA neurons. Cluster identity is shown 
using color-coded key to the left of each heatmap pair. Green ticks 
along the far left side of MGN heatmap indicate phototagged cells 
and orange ticks along BLA show in-network cells, which have been 
concatenated and shown in duplicate below each plot. Inset bar plots 
show the number of MGN or BLA cells within each cluster. Cluster 
#7 (green) is the most prevalent in the MGN (Kruskal–Wallis’ test, 
****p = 4.3344e − 17, Wilcoxon’s rank-sum post hoc tests comparing 
#7 cluster to #1 (purple) ***p = 0.00021; #2 (orange), p = 0.00033; 
#3 (dark blue) **p = 0.00031; #4 (light blue) **p = 0.00029; #5 (red) 
**p = 0.00031; #6 (yellow) **p = 0.00028; #8 (pink) p = 0.00032). 
In the BLA, cluster #8 (pink) is the most prevalent response pro-
file (Kruskal–Wallis’ test, ****p = 2.2658e − 17, Wilcoxon’s rank-
sum post hoc tests comparing cluster #8 (pink) to #2 (orange) 
**p = 0.00018; #5 (red) **p = 0.00022; #6 (yellow) **p = 0.00012; #7 
(green) **p = 0.00025). The MGN contains three clusters (#1 purple, 
#3 dark blue, and #4 light blue) indicating strong initial excitatory 
response and sustained excitatory response to stimulus that are not 
present in BLA. Interestingly, although the same clusters are present 
in MGN → BLA, they are not represented in the in-network BLA. In 
a similar vein, the in-network contains a cluster (#7 yellow) which is 
not seen MGN → BLA group
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in concert with the strong phasic response following cue 
onset. To explore trends in the population response across 
the two brain regions, we examined the spike activity of all 
simultaneously recorded neurons. We computed the average 
z-score response for each raster, maintaining the trial struc-
ture by aligning each trial to the CS. The MGN population 

has robust phasic responses to each CS-E resulting in higher 
magnitude overall during the 1 s response window (Fig. 6a). 
In contrast, the BLA population exhibits mildly inhibitory 
responses to the reward cue (Fig. 6b). In response to the pun-
ishment cue, the MGN exhibits a strong excitatory response 
immediately following the cue whereas the BLA exhibits an 
initial inhibitory response (Fig. 6c, d). There is no evidence 
of tonic changes across the population for either stimulus, 
e.g., as might be seen by a steady change across baseline or 
response windows.

During associative learning tasks, trial-to-trial changes 
during the response window are expected and are often taken 
as evidence of learning. However, the pre-cue (baseline) 
periods are typically not expected to exhibit trial-by-trial 
changes; we expect the firing to be relatively static during 
pre-cue periods across trials. To test for subtle changes to 
the tonic firing rate during the pre-CS periods, we denoted 
a baseline period as 1 s period before cue onset and an 
experimental response period of 1 s response following cue 
onset for every trial. Rather than averaging across trials, we 
instead summed the number of spikes across trials within 
each window, yielding the spike count per trial across each 
time interval (Fig. 7a). This allowed us to compare the num-
ber of spikes for each trial before and after the cue to identify 
trends. We note that this approach is unlike the one taken in 
Figs. 4 and 5, where clustering used standard peri-stimulus 
time histograms for each neuron. There, the approach used 
trial-averaged histograms making within-trial comparisons 
on a seconds timescale. Here, the spike count per trial dur-
ing baseline window and response windows are used, which 
allows us to compare across epochs, making between-trial 
comparisons of a 1-s window across the session on a minutes 
timescale. We performed hierarchical clustering on the spike 
count per trial over all neurons and identified 13 distinct 
clusters (Fig. 7b, c). We used linear regression to identify 
if a trend was present during the ITI in either the reward or 
punishment protocol. We found a significant change across 
epochs in half of the clusters we identified.

Summary of results

In brief, we have seen that while MGN cells are signifi-
cantly excited to either the reward or punishment stimulus 
compared to other a priori categories,  BLA cells have no 
significant difference between categories (Fig. 3d). We com-
pared two a priori categories (E + A + , E − A −) between 
MGN subpopulations and found no significant differences 
in either case; however, the BLA does show a difference 
between in-network and out-of-network subpopulations 
for E − A − (Fig. 3e). We adopted an unsupervised cluster-
ing approach to explore responses to CS-E and CS-A and 
found that a variety of response profiles were represented 
in the MGN but fewer of these response profiles were 

Fig. 5  Clustering neural responses to hit, miss, false alarm, and cor-
rect rejection behavioral categories have greater variety of response in 
MGN compared to BLA. a Neural trajectories along principal com-
ponents for each condition are shown for MGN. Behavioral response 
categories are defined as hit (licking during reward), miss (not licking 
during reward), false alarm (licking during punishment), and correct 
rejection (not licking during punishment). In the MGN, correct rejec-
tion trajectory is the longest (Kruskal–Wallis’ test ****p < 2e − 07; 
Wilcoxon’s rank sum post hoc tests: CR to hit, ***p = 4.7768e − 04; 
CR to miss, ***p = 3.6585e − 05; CR to FA, ***p = 6.0058e-05). This 
is reflected in the distances as well, with correct rejection set apart 
from the other categories (Kruskal–Wallis’ test, ***p = 9.11e − 05: 
Wilcoxon’s rank sum post hoc tests hit-to-CR compared to hit-to-
miss **p = 0.0058; hit-to-FA, **p = 0.0086; CR-to-miss, n.s.; CR-to-
FA, n.s.; miss-to-FA, **p = 0.0013). b  Neural response trajectories 
in the BLA using same categories defined in (a). trajectory lengths 
are not significantly different when corrected for multiple compari-
sons (Kruskal–Wallis’ test, *p = 0.02; Wilcoxon’s rank sum tests, FA 
to hit, p = 0.0931, FA to CR, p = 0.026, FA to miss, p = 0.026). The 
distance between hit-to-FA is longer than CR-to-miss and miss-to-
FA pairings (Kruskal–Wallis’ test, p = 1.11e − 05; Wilcoxon’s rank 
sum post hoc tests compared hit-to-FA distances to: hit-to-CR, n.s.; 
hit-to-miss, n.s.; CR-to-miss, p = 0.001; miss-to-FA, p = 0.0047). c 
Dendrogram shows relationship between 9 hierarchical clusters of 
neuronal response z-scores shown in heatmap to the right. Heatmap 
shows response of 202 cells to each of 4 behavioral categories, tone 
onsets at 0 s for each condition. Color bands to the right of heatmap 
represent the 9 functional clusters output from hierarchical cluster-
ing (Ward’s method, Euclidean’s distance metric, cutoff height rep-
resents 30% of maximum data value). d Mean z-score response of 
all cells grouped by cluster; cluster ID shown to the right, number 
of neurons contained within cluster is shown to the right of ID. Tone 
onset at 0  s for hit, miss, false alarm, and correct rejection catego-
ries. Bar plot on right shows the breakdown of cell type as the total 
percentage of cells within each cluster that belong to MGN vs BLA. 
e–h Heatmaps arranged by cluster of single cell z-score responses 
to onset of CS for each behavioral response category type for each 
population MGN, MGN → BLA, BLA, in-network BLA neurons. 
Cluster identity is shown using color-coded key to the left of each 
heatmap pair. Green/orange ticks along the right side of MGN/BLA 
heatmaps indicate phototagged/in-network cells, which have been 
concatenated and shown in duplicate below each plot. Inset bar plots 
show the number of MGN or BLA cells within each cluster. All nine 
clusters are present in the MGN, the largest of which is cluster #7 
(purple) (Kruskal–Wallis’ test, p = 7.29e − 19; Wilcoxon’s rank-sum 
post hoc tests compare #7 (purple) to #1 (light green) p = 0.00033; 
#2 (dark blue) p = 0.00032; #3 (hot pink), p = 0.00027; #4 (yellow) 
p = 0.00026; #5 (moss green) p = 0.00021; #6 (orange) p = 0.00033; 
#8 (light blue) p = 0.00021; #9 (red) p = 3.3e − 5). However, only 
four clusters are represented in the BLA, of which cluster #9 (red) 
is the largest (Kruskal–Wallis’ test p = 3.76e − 19; Wilcoxon’s rank-
sum post hoc tests compare #9 (red) to #6 (orange) p = 1.7e − 05; #7 
(purple) p = 2.02e − 05; #8 (blue) p = 1.7e − 05). Although these same 
4 clusters are represented in in-network BLA subpopulation, there 
are only six of the 9 clusters represented in the MGN → BLA. As 
before, there is not a one-to-one match across categories between the 
MGN → BLA and in-network BLA populations
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represented in the BLA (Fig. 4e, f). We used the same clus-
tering approach on data that explored CS-E and CS-A sorted 
by correct or incorrect behavioral responses into hit, miss, 
correct rejection, false alarm categories and found a simi-
lar trend; the MGN represented all clusters while the BLA 
contained fewer than half the number of clusters (Fig. 5e, 
f). Moreover, the neural trajectories for these four catego-
ries presented different dynamics in the two regions. In the 
MGN, correct rejection was the longest trajectory and was 
furthest from hit; however, in the BLA, there was no signifi-
cant difference between trajectory lengths and, instead, the 
greatest distance was between hit and false alarm (Fig. 5a, 
b). Finally, we also uncovered evidence of slower, tonic 
changes during baseline periods using a novel, albeit ele-
mentary, method to dissect trial-by-trial changes (Fig. 7).

In conclusion, we have identified strong evidence that 
robust signals sent from the MGN to the BLA largely carry 
valence-independent signals that refer to the “absolute value” 
or salience of the stimulus, while the lower amplitude signals 
found in the BLA reveal some valence coding populations. In 
summary, filtering occurs at the level of transmission between 
the MGN and BLA that enables this transformation, which we 
speculate may include axo-axonal connections, heavy local 

inhibition, and summation of other inputs, dendritic nonlin-
earities, or shunting. Furthermore, we show that in both the 
BLA and MGN, we see tonic changes in addition to changes 
in phasic responses to discrete cues that may reflect changes 
in internal state or contextual modulation.

Discussion

There is a rich history of studying Pavlovian fear condition-
ing in the amygdala to better understand the cellular mecha-
nisms underlying learning. Due to the simple experimental 
design, robust results, and repeatability, this paradigm has 
been widely studied at the anatomical (LeDoux 1986; Yaniv 
et al. 2001) and circuit levels (Romanski and LeDoux, 1992), 
and in reference to synaptic pathways (Duvarci and Pare 
2014; Maren 2005). There are two ways that sensory infor-
mation enters the amygdala: from thalamic input or via corti-
cal input pathways. Cortical input is generally considered to 
be slower and more precise, whereas the thalamus represents 
the rapid relay of sensory information (Maren and Quirk 
2004). For associative conditioning to occur, there must be 
NMDAR-dependent long-term potentiation in the amygdala 

Fig. 6  Population dynamics 
show strong responses to audio 
cue and no visible tonic changes 
during pre-stimulus (base-
line) periods. a, b Temporal 
dynamics of neuronal MGN 
and BLA population response 
to reward-predictive cue during 
discrimination trials. Spike 
activity of all simultaneously 
recorded MGN (BLA) neurons; 
50 ms bins. Consistent with the 
small number of task-responsive 
neurons that change with condi-
tioning (Supplementary Fig. 2 
D), conditioning does not pro-
duce a visible change in firing 
rate for either population. Note 
that conditioning also does not 
produce a visible change to the 
tonic firing rate during the pre-
stimulus period. c, d Temporal 
dynamics of neuronal MGN and 
BLA population response to 
punishment-predictive cue dur-
ing discrimination trials. Spike 
activity of all simultaneously 
recorded MGN (BLA) neurons; 
50 ms bins
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(Clem and Huganir 2010; Janak and Tye 2015; McKernan 
and Shinnick-Gallagher 1997; Rodrigues et al. 2001; Rogan 
et al. 1997; Rumpel et al. 2005; Tye et al. 2008). However, 
given that these processes also occur in the thalamus, theo-
retically, the thalamus could be synthesizing and filtering 
this information before passing it to the amygdala, and act-
ing as more than a simple relay (Jones 1991; Lee et al. 2010; 
Murray Sherman 2001; Sherman 2007; Weinberger 2011).

We have uncovered strong evidence in support of the 
notion that the thalamus is indeed more than a simply relay 
system as suggested by others. First, the MGN is filter-
ing salient information to the BLA and transforming other 
valence-enriched signals in the MGN. Therefore, we pos-
tulate that the thalamoamygdala circuit follows a model 
described by the two-factor theory of emotion (Aron et al. 
2005; Schachter and Singer 1962; Tye 2018), where rec-
ognition of salience in the thalamus is followed by assign-
ment of valence downstream in the amygdala. Second, the 
MGN and the BLA process expected outcomes differently, 
as evidenced by correct vs. incorrect behavioral response. 
Dynamic changes in firing rates accompany anticipatory 
punishment in the MGN, whereas in the BLA, these greater 
dynamics instead follow unexpected punishments. Third, we 
have implemented a simple method to identify tonic changes 
that occur during inter-trial intervals, dynamics which previ-
ously have not been studied in detail.

MGN filtering salient information directly to BLA 
but routing valence‑assigned signals via indirect 
pathways to BLA

In this study, an optogenetic technique known as phototag-
ging allowed us to identify four populations: (1) cells that 
project from the MGN to the BLA (MGN → BLA), (2) 
non-specific MGN cells, (3) cells in the BLA that fire in 
response to light-evoked activation of the MGN within a 
short latency (in-network), and (4) those that do not (out-
of-network BLA). In our analyses, we frequently perform 
computational techniques using a combined BLA and MGN 
data set to allow for direct comparisons across these dis-
tinct subpopulations; hierarchical clustering, for example, 
groups all neurons with similar response profiles together 
and allows explicit identification of the different populations 
from which they originated. First, we found that the BLA has 
proportionally more in-network neurons that respond to both 
CS and US than the out-of-network populations; however, 
there is no proportional difference for MGN → BLA and 
non-specific cells in the MGN (Fig. 3c). Second, we defined 
explicit, a priori response categories and observed how the 
neurons in each brain region responded. We found evidence 
that all MGN cells overwhelmingly exhibited a valence-
independent excitatory response profile. By contrast, the 
BLA did not show a statistically significant difference in 

proportion across the distinct categories (Fig. 3d). Within 
the preferred category, we did not find notable differences 
in the proportion of MGN → BLA or non-specific MGN 
cells. However, the BLA did show significant differences 
between in-network and out-of-network populations across 
the largest categories (Fig. 3e). While it is hardly surprising 
that the MGN cells respond to salience, it is interesting to 
note the MGN phototagged cells exhibited less functional 
diversity than non-phototagged cells. Certain responses that 
differentiate positive and negative valence actually disap-
pear in the MGN → BLA population (E + A − , E − , and 
A −) while others are richly represented. Somehow, the large 
amplitude, sharp transient responses in MGN cells are not 
present in the BLA — either through presynaptic modula-
tion, dendritic filtering, or local inhibition within the BLA, 
these robust signals are either muted or absent in the BLA 
(Fig. 3e). Why they exist in MGN→BLA neurons but not in 
BLA neurons receiving input from MGN→BLA neurons is 
unclear. Perhaps they send collaterals to the cortex or other 
regions where the sharp amplitude signals are propagated, 
while axo-axonal, dendritic, or somatic inhibition may con-
tribute to the most robust signals being filtered out before 
arriving within the BLA.

Another interesting note is that the individual a priori 
categories are represented in MGN → BLA and in-network 
BLA subpopulations to different degrees. This is a surpris-
ing result, as these two populations directly share infor-
mation (Fig. 3e). We see evidence of the A-category in 
in-network BLA yet the same category is absent entirely 
in the MGN → BLA subpopulation. One could interpret 
this by noting the importance of the polysynaptic connec-
tions that make up the in-network population; information 
is propagating into the BLA but not, apparently, via direct 
MGN → BLA connections. The thalamo-cortico-amygdala 
pathway, which plays a strong role in memory and fear learn-
ing (Ferrara et al. 2017), could be collateralizing signals. Of 
the two signaling stream pathways in the thalamocortical 
system, the higher order pathway does appear to be collater-
alized; we speculate here that by sending the signal to multi-
ple brain regions, one region is connecting with interneurons 
that cancels out the direct signals coming from the thalamus 
(Wolff et al. 2021), resulting in different response profiles in 
evidence in the BLA. Alternatively, input sent along direct 
projections into the BLA could undergo dendritic filtering, 
which exists to intentionally dampen strong signals coming 
into the amygdala and is likely to preserve signals with the 
highest salience.

Our general interpretation of these data is that the BLA 
represents a diverse response that incorporates both arousal 
and valence while the MGN primarily represents arousal. 
This result follows one of two models highlighted in a recent 
review article (Tye 2018), specifically, the two-factor theory 
of emotion. Within the framework of valence processing, the 
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two-factory theory outlines the following order of operations 
for two distinct neural processes: first, the brain must recog-
nize the salience of a stimulus as the overall magnitude of 
the intensity of the response (|n|) before assigning a positive 
or negative valence to the stimulus (+ n or − n). Here, we 

see an indication of pure salience occurring upstream in the 
MGN, where information is largely independent of valence, 
and valence is assigned downstream in the BLA. To our 
knowledge, this is the first time this model has been vali-
dated through anatomical structure and function. Moreover, 
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although diverse response categories are present in the MGN 
(Figs. 3e, 4e–h, 5e–h), there is not a one-to-one match across 
MGN → BLA and in-network populations indicating that the 
MGN is routing information via alternate, indirect pathways 
that ultimately terminate in the BLA.

MGN and BLA respond differently to expected 
and unexpected outcomes

We investigated the response of the MGN and the BLA to 
account for different representations when behavior matched 
or contrasted with the expected outcome of the tone (hit, miss, 
correct rejection, false alarm) by plotting the neural trajecto-
ries in reduced dimensional space. In the MGN, there was a 
significantly longer trajectory associated with correct rejec-
tion and significantly greater distances between hit and correct 
rejection trajectories than most other pairings. This indicates 
more dynamics for these two conditions and fewer dynamic 
differences during miss or false alarm (Fig. 5a). By contrast, 
in the BLA, although trajectories are of similar length, their 
relative distances have shifted such that hit and false alarm 
are further apart whereas miss and correct rejection are less 
dynamic. Why would the MGN appear to represent hit and 
correct rejection with different dynamics compared to the 
other responses, while the BLA minimizes the role of correct 
rejection and instead emphasize false alarm with hit?

One interpretation of these findings is that error signals 
are more pronounced in the BLA, while the expectation of 

punishment is amplified in the MGN. The MGN projects 
to multiple layers within the cortex (Lee 2015) and the 
thalamocortical pathway was found to be the principal fear 
memory pathway of an intact brain (Boatman et al. 2006). 
Thus, it follows that anticipatory knowledge of a coming 
punishment is amplified in the MGN as this signal is likely 
sent to cortical regions. However, since false alarm is paired 
with an unexpected punishment, an incorrectly identified 
signal would receive greater emphasis in the BLA. In con-
trast to the classic reward prediction error signals seen in 
some VTA dopamine neurons (Schultz et al. 1997), a subset 
of BLA neurons have actually been shown to exhibit a phasic 
excitation in response to unexpected reward omission that is 
correlated to frustrative nonreward. In this study, frustration 
was operationally defined as an increase in vigor or intensity 
of responding following an unexpected reward omission in 
an operant conditioning task (Tye et al. 2010).

Evidence of both phasic and tonic changes

Strong phasic responses within an experimental response win-
dow are the basis for investigating neural responses to stimuli. 
Frequently, researchers average across multiple trials to form a 
detailed response profile in time. Although working with trial-
averaged responses has a long and successful practice, averag-
ing obscures slow-scale changes that could emerge during the 
learning process. In this paper, we introduced a novel method 
for investigating slow-scale, tonic changes that accompany 
learning. Instead of averaging across trials, we drill down into 
the trial-by-trial changes by clustering spike counts. We identi-
fied subsets of neurons that experience slow but observable 
changes to their firing rates across the trials. More surprisingly, 
we uncovered changes during baseline periods, which are tradi-
tionally assumed to be static. Tonic firing more often consists 
of a steady firing at a specific frequency so changes to this 
background state that accompany learning are an unexplored 
area. It is our opinion that investigating trial-by-trial changes is 
a potentially rich area of study, which we intend to study further 
with increased specificity and granularity.

Summary and future directions

In the current study, we chose to focus on direct projections 
between the MGN and BLA, which have a specific response 
profile, namely excitatory long-range responses that propagate 
downstream to other brain regions. However, the thalamus, and 
specifically the MGN, has a diverse representation of other types 
of cells such as interneurons that might have firing rates orders 
of magnitude higher than projectors. Another important future 
direction will be to observe the activity of MGN interneurons 
or other locally projecting neurons which could have distinct 
activity patterns involved in the filtering and processing of infor-
mation distinct from MGN → BLA cells.

Fig. 7  Hierarchical clustering across trials highlight MGN neurons 
that exhibit tonic changes across trials during baseline ITI. a Sche-
matic plot highlights baseline and response windows used to compute 
spike counts per trial. The leftmost diagrams depict raster (top) and 
typical trial-averaged PSTH (bottom). Detail of spike raster for first 
five trials during baseline (top middle) and response windows (bot-
tom middle) and the summed count for each trial of the baseline (top 
right) and response (bottom right). b Hierarchical clustering on nor-
malized spike counts, summed across time dimension during specific 
time periods. Dendrogram along the top shows resulting clusters; 
heatmap shows 2 regions for each CS protocol, 4 conditional cases 
in all: 75 trials for pre-stimulus period (− 1 s to cue onset) for CS-E, 
75 trials for post-stimulus period (cue onset to + 1  s) for CS-E; and 
the pre-cue baseline and post-cue response for the 35 trials for CS-A. 
Neuronal units run along x-axis; conditional cases showing trial num-
ber make up the y-axis. Dark bands at the upper portion of each con-
ditional case are the result of z-score normalization using the 10-trial 
habituation period as baseline. c Mean z-score response by trial num-
ber for the four conditions: reward conditioning shown in blue shad-
ing, punishment conditioning shown with orange shading with lighter 
shade representing pre-cue onset, and darker representing post cue-
onset. Inset axes show scale of z-score responses by trial. Blue square 
identifies clusters with tonic changes during the pre-cue baseline 
period before CS-E trials, while orange circle marker identifies clus-
ters with tonic change during baseline preceding CS-A. Clusters con-
taining a single neuron across conditions are not shown. Tonic change 
defined by a non-zero slope of regression line fit to mean response of 
all units within cluster. Inset bar plot shows percentage of MGN or 
BLA cells contained within each cluster

◂
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We have demonstrated that the role of the MGN in relaying 
sensory information is not a static one. It appears to aid the 
learning process by filtering incoming sensory information to 
route saliency information directly to the BLA and other infor-
mation, such as error signaling, indirectly to the BLA. While 
additional work will be necessary to evaluate the validity of our 
findings, our work supports the two-factor theory of emotion 
with MGN routing arousal information to the BLA and sug-
gests the exploration of computations in the MGN that shape 
learning, as opposed to treating MGN as a sensory relay.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00213- 022- 06284-5.
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