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Despite many social interactions being rewarding and 
capable of motivating instrumental behaviour from 
animals for access1, not all social interactions are pos-
itive. Indeed, sociability and valence have been proposed 
to be independent variables2. Here, we propose a model 
in which sociability and valence are linked by numer-
ous factors — including social context, isolation history, 
social memory and social rank — that serve to influence 
the assignment of positive or negative valence to social 
stimuli, defined here as social valence.

What neural processes occur when an animal comes 
into contact with a social agent to rapidly evaluate the 
positive or negative valence associated with that social 
agent? Here, we explore the high-level computations that 
incorporate various contextual social factors that affect 
social valence, and the neural circuits and systems that 
implement them. We propose that social valence assign-
ment depends on a combination of factors that influ-
ence the perceived valence of a social agent. In addition, 
we propose that these factors interact with the align-
ment between the self and other (social agent) to fur-
ther influence valence. More specifically, the degree to 
which another social agent aligns with the self — that is, 
whether they share goals in a cooperation-like manner 
or have mutually exclusive goals in a competition-like 
manner — influences perception, valence assignment, 
motivation and action selection (Fig. 1). We define 

this phenomenon as social alignment, which can have 
a considerable impact on social valence.

Although social alignment is a primary factor that 
guides ongoing social valence assessment, many addi-
tional factors serve to influence social valence, particu-
larly when there is a lack of familiarity with the social 
stimulus being assessed. When assigning valence to a 
novel social stimulus, we hypothesize that individuals 
will rely on the information they have — including 
social history, social attributes and their internal state, 
which is modulated by the preceding social environ-
ment. For example, in individuals with high familiarity, 
we propose that social attributes can influence assign-
ment of valence, but that social memories, established 
ranks and established cooperative or competitive rela-
tionships will weigh more heavily on valence assignment 
than in interactions with unfamiliar agents. Similarly, 
we propose that factors impacting an animal’s social 
history (for example, experience of social isolation) 
can alter the hedonic value of social stimuli and, conse-
quently, bidirectionally modulate the motivation to seek 
social contact3,4.

Social memory and recognition systems, as well as 
a catalogue of the social history of oneself and one’s 
relationships, are all necessary in order to represent 
whether a given relationship is cooperative or competi-
tive. Although existing studies discuss social memory in 
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Sociability
A parameter describing the 
degree to which an animal 
seeks social contact or engages 
in social interactions.

Valence
The degree to which something 
is pleasurable (positive) or 
aversive (negative).

REVIEWS

NATuRe RevIewS | NeuroscieNce

mailto:tye@salk.edu
https://doi.org/10.1038/s41583-022-00609-1
https://doi.org/10.1038/s41583-022-00609-1
http://crossmark.crossref.org/dialog/?doi=10.1038/s41583-022-00609-1&domain=pdf


0123456789();: 

a valence-independent manner, newer literature sheds 
light on the overlapping systems and circuits under-
lying social memory and valence. We review the neu-
ral systems that are necessary for social memory and 
recognition5–8, and how they contribute to the assignment 
of valence to a social stimulus. Furthermore, although 
social hierarchies have been described for a century, only 
recently have neuroscientists been studying their neural 
mechanisms9,10. We review this recent literature and how 
the dynamic nature of hierarchies relates to valence and 
could contribute to social valence assignment.

Social heuristics help guide the assignment of valence 
to a novel social stimulus, given its observable attributes. 
Across species, physical social attributes (how another 
individual looks, sounds and smells) provide crucial 
information that can modulate the valence assigned to 
that individual and, consequently, social motivation and 
the behavioural response to that individual (Fig. 2). For 
example, features that make an individual seem large 
and intimidating, or sick and weak, could decrease the 
drive to interact with that individual. We review the liter-
ature on how perception of social attributes guides social 
valence assignment.

In humans, perceived deficits in the objective quan-
tity, or subjective quality, of social contact (‘loneliness’11) 
are correlated with deficits in mental12 and physical13,14 
health, and shortened lifespan15–19. Perceived loneliness 
correlates with increased morbidity and mortality in 
cancer and cardiovascular disease20, and the severity 
of symptoms in response to viral immune challenges21 
and of inflammatory responses22. Yet we are only begin-
ning to uncover the neurobiological mechanisms that 
link deficits in social contact to the myriad of delete-
rious health consequences. Given the global isolation 
and distancing in recent years, one particularly timely 

question is how deficits in social contact change our 
brains and our behaviour. Prolonged social isolation 
can produce widespread and detrimental effects on the 
brain and behaviour across various species23, may result 
in dire evolutionary consequences24, produces territo-
rial behaviour, aggression and social avoidance25–30, is 
considered torture31 and has even been used as a model 
for psychosis27. By contrast, acute periods of social iso-
lation seem to have distinct effects on the brain and 
even opposing effects to those of extended social isola-
tion on behaviour3,32,33. Does social isolation represent a 
singular internal state that lies on a continuum defined 
by time, changing its behavioural effects and biological 
underpinnings in a natural progression, or do acute and 
prolonged isolation represent separable internal states? 
Here, we synthesize research on the exciting intersection 
of sociality and valence, moving towards a framework 
for beginning to answer such questions.

Social valence
Determining whether something is good or bad is one 
of the most important functions that the brain performs. 
Models of emotion posit that emotional states can be 
explained by how aversive or rewarding a stimulus is 
(valence) and how much arousal it evokes34,35. Here, we 
apply this general definition of valence to social stim-
uli. Similar to other stimuli, social stimuli are attributed 
as having a negative (unpleasant) or positive (pleasant) 
valence. This valence assignment is accompanied by 
observable changes in behaviour — approach towards 
a social stimulus of positive valence and avoidance of a  
negative-valence social stimulus. Many psychiatric 
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Fig. 1 | social alignment: a coarse parameterization of 
interactions between the self and other with positive 
or negative valence. Proposed model in which events can 
benefit the other and also be good for the self (resulting in 
mutual benefit); can be bad for the other and good for the 
self (jealousy, schadenfreude or sadism); can be good for 
the other and bad for the self (helping or altruism); or can 
be bad for both the self and the other, which could lead to 
sympathy. If an individual feels their fate is tied to another, 
then they will move along the axis of cooperation (events 
or stimuli that are good for the other are also good for the 
self, and punishments or threats to the other are bad for 
the self), and be motivated to help others (altruism)250–252. 
By contrast, if an individual perceives themselves to be in 
competition with the other, then they will move along the 
axis of competition (what is good for the other is bad for 
the self, and vice versa, as there are finite resources for 
which the self and the other are in competition)253–257.

Fig. 2 | Factors influencing social valence assignment and 
circuits underlying those factors. A circuit summary of 
brain regions implicated in processing four factors that 
contribute to social context and, thus, assignment of social 
valence: social attributes, social rank, social memory and 
social isolation. Circuit nodes represented have been directly 
evidenced or hypothesized to play a part in processing  
these four social factors. Our central theory is that an  
animal assigns valence to a social stimulus depending on the 
attributes, rank, social memory and housing conditions of  
the individuals interacting. In addition, internal state factors  
such as hormones, energy and motivation affect valence 
assignment. Valence assignment, in turn, influences an 
animal’s behavioural response. Attribute circuits are based on 
primate55,59,62,83,99,100,102,258 and rodent93–97 literature. Social-rank 
circuits are based on primate118,119,121–123,127,138,259 and 
rodent115,116,125,140 literature. Social memory117,141,152,155,160,168,260 
and social isolation218,219,225,261,262 circuits are based on rodent 
literature. Brain regions are not arranged anatomically, and 
regions found only in primate brain are coloured blue. ACC, 
anterior cingulate cortex; BLA, basolateral amygdala; BNST, 
bed nucleus of the stria terminalis; CeA, central amygdala; 
DMH, dorsomedial hypothalamus; DRN, dorsal raphe 
nucleus; ENT, entorhinal cortex; FFA, fusiform face area; HPC, 
hippocampus; LH, lateral hypothalamus; MDT, mediodorsal 
thalamus; MeA, medial amygdala; mPFC, medial prefrontal 
cortex; mPOA, medial preoptic area; NAc, nucleus 
accumbens; OB, olfactory bulb; OFC, orbitofrontal cortex; 
PVN, paraventricular nucleus of the hypothalamus; STG, 
superior temporal gyrus; STS, superior temporal sulcus;  
SuM, supramammillary nucleus.

▶

Social context
The social aspects related  
to the environment that an 
individual is in. This can include 
social rank and the presence or 
absence of others, as well any 
history of social interactions 
(such as fighting, mating and  
so on) in that context.

Social rank
The social position of an 
individual relative to others  
in a group (for example,  
social hierarchy).

Social valence
The valence assigned to  
a social stimulus or agent.

Cooperation
Two or more individuals with 
common or shared goals.

Competition
Two or more individuals with 
goals which are incompatible 
or in conflict.

Social alignment
The degree to which the goals 
of the self are in cooperation 
(‘aligned’) versus in competition 
(‘opposed’) with the goals of 
the other.

Social history
The collective social experience 
of an individual. This includes 
social memories, social rank, 
isolation history, group size  
and other related social 
experiences.

Social attributes
The physical attributes of a 
social agent including their age, 
size, rank, resource-holding 
potential and so on.

Social heuristics
generalized associations that 
can facilitate rapid assessment 
of a social agent.
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disorders are characterized by dysregulated emotional 
processing and social behaviours, which could be driven 
by disruptions of valence encoding36–39. Furthermore, 
across psychiatric disorders, brain regions that encode 
both valence and social functions show aberrant 
activation during emotional processing40.

Appropriate valence assignment to social stimuli is 
necessary to seek and maintain healthy social lives and 
is vital for the survival of a social species. Unlike many 
other stimuli, social relationships are bidirectionally 
dynamic, involving flexible changes in behaviour of 
two active agents, both of which can affect the other. 
This makes the assignment of valence to social stimuli 
more complex than for other stimuli. Flexibility in social 
valence assignment is necessary to allow for changes in 
social motivation as a social relationship or the envi-
ronment changes — seeking interactions when they are 
beneficial and avoiding them when they are not.

The perceived valence of a social agent relies primar-
ily on their social alignment: whether the relationship 
between oneself and the agent is competitive or coopera-
tive (Fig. 1). The degree of opposition or alignment of two 
individuals’ goals is a primary parameter that defines the 
social relationship and can dictate social valence assign-
ment during a given interaction. In addition, internal 
states, experience-based predictions and responses to a 
changing environment all influence the valence assigned 
to a social stimulus, implemented across multiple cir-
cuit motifs41. Computing social valence becomes highly 
complex, because it may incorporate the dynamic back 
and forth between two social agents. In addition, sep-
arate computations — each influenced by the relative 
rank, identity and history of previous interactions3,4 — 
may be made for each individual in a social interaction. 

Predictions of valence in terms of how others will 
behave and affect the self may be extrapolated based 
on individualized models for the theory of mind of each 
individual42,43.

Adding to this complexity, arousal can also influence 
the cognitive appraisal of an emotional or social stimu-
lus, and individuals can experience emotional contagion 
in a way that is amplified by the arousal state41,44–46. 
Researchers have only just begun to unravel how the 
assignment of valence is algorithmically implemented 
into neural circuit motifs41. Emotions and their prim-
itive variants are evolutionarily conserved, particularly 
among social mammals. Social contact due to group liv-
ing can further affect social valence. Thus, communal 
dynamics, the evolutionary fitness of a species and the 
synchrony between behaving social agents are all major 
variables that can affect social valence (BoxeS 1 and 2).

Although myriad factors contribute to social valence 
assignment and updating, we focus on the influence 
of social attributes, social rank and social isolation, as 
defined by a social homeostasis model (a model that pro-
poses we have a preferred optimal ‘set point’ in terms of 
the quantity and quality of social contact, wherein social 
isolation or overcrowding may represent a challenge to 
the system)3,4. Although these key variables are universal 
factors that can affect valence assignment, variability in 
valence assignment across individuals can arise through 
differential weighting of these factors.

Social attributes and their perception
The perception of physical social attributes requires mul-
tiple sensory systems, as social stimuli are multimodal. 
Here, we focus on auditory and olfactory cues, given the 
rich literary landscape about these, although we point 
the reader to emerging work in the still developing field 
of social touch47–49. We also briefly discuss some of the 
social visual perception literature that demonstrates 
valence encoding.

Importantly, these physical features do not intrin-
sically determine the social valence of a conspecific, 
because valence is assigned to a conspecific and, there-
fore, also depends on the state and social history of the 
subject assigning valence to the conspecific. The spe-
cific weighting and valuation of each feature may vary 
between individuals, and this variability may serve the 
evolutionary purpose of preserving diversity among a 
population. However, the physical attributes of a social 
stimulus represent a vivid and immediate source of infor-
mation about many features of an animal, including its 
behaviour. Behaviours represent a dynamic weighted 
aggregate of information, whereas physical attributes are 
relatively static bits of information. Notably, auditory and 
visual information represent both static attributes (such 
as pitch of voice or size) and dynamic ones (such as vocal-
izations and gestures). How social stimuli are perceived 
can substantially affect social valence assignment.

Perception of auditory social cues. Conspecific vocaliza-
tions provide emotionally meaningful social information 
that informs behaviour. We learn to recognize voices as 
infants50,51, and our ability to perceive emotions from 
voices starts early in life, reported as early as 4 years old52. 

Box 1 | social valence is guided by the alignment of goals for self and other

It is adaptive for individuals of a species that share genetic material to cooperate and to 
care for others as extensions of themselves. By contrast, it may be more adaptive for a 
species overall if only a subset of genetic material (that of the ‘fittest’) is perpetuated263, 
thereby necessitating a competitive scenario both within and between species (Fig. 1). 
Interestingly, this evolutionary theory has been supported by behavioural observations 
showing that rats show more altruistic ‘helping’ behaviour when presented with 
familiar rats or rats sharing physical traits of those with which they were raised264,265. 
Individuals do not seem to be inherently aware of their own genotype but, instead, rely 
on familiarity and stimulus generalization for identification, as evidenced by the fact 
that rats will more readily help a stranger that is similar to those they were reared with, 
even if they are a different strain264. This notion is also supported in humans by racial 
and gender biases that are pervasive (as reflected in Harvard’s Implicit Association 
Test266) and influenced by the racial identity of the participant, and by the finding that 
interracial cohabitation promoted subjective pleasure and physical engagement while 
reducing anxiety in a novel interracial interaction267,268.

Some work has identified possible neural mechanisms that help an individual 
determine whether their own goals are aligned with those of a conspecific. Brain state  
synchrony of interacting individuals in the prefrontal cortex (PFC) has been shown in 
humans269 and mice270 alike. In the context of social decision-making during a prisoner’s 
dilemma task, which requires animals to anticipate the social alignment of others, 
non-human primates interacting or engaging in cooperative behaviours show distinct 
activity in corticolimbic circuits involving cortical regions such as the anterior cingulate 
cortex (ACC), PFC, orbitofrontal cortex (OFC) and basolateral amygdala (BLA) from  
that shown during competition132,253,255,271,272. Furthermore, a recent study in macaques 
shows that activity in the dorsal medial prefrontal cortex (mPFC) encodes detailed 
representations of a group’s behaviour and reflects others’ identities, actions and 
outcomes273.

Brain state synchrony
When the internal brain  
state of a social agent is 
synchronized to the brain state 
of another social agent, such 
that changes in one produce 
changes in the other.

Theory of mind
The ability to create a model  
of another’s mind as distinct 
from one’s own by inferring 
their mental state, logic, beliefs 
and emotions.

Emotional contagion
The phenomenon of  
individuals mimicking the 
emotions or emotional 
behaviours of others.

Social homeostasis model
A conceptual model proposing 
that there is an optimal  
quality and/or quantity of 
social contact, regulated  
by a detector, control centre 
and effector system.
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Voices can quickly convey universal emotion and arousal 
through screams, sobs or laughter53. Furthermore, voices 
can be used to identify gender54.

In the human brain, the superior temporal sulcus 
(STS) preferentially responds to human voices over 
other sounds55. In addition, the STS probably enables 
us to extract valence features about human voices, 
because it responds more strongly to emotional than 
non-emotional voices56,57 and is activated during voice 
gender perception58. The neighbouring superior tempo-
ral gyrus (STG) shows increased responses to emotional 
voices57. Notably, the STS and STG are involved in the 
multisensorial perception of both faces and voices57. 
Emotional vocalizations activate not only auditory 
regions but also the prefrontal cortex (PFC) and amyg-
dala in humans59, suggesting that valence of social vocal 
cues could be assigned downstream of the auditory cor-
tex. However, one study in humans showed that vocal 
emotions could be decoded based on the spatial patterns 
of blood oxygen level-dependent responses in auditory 
cortical regions, suggesting that valence information 
could be decoded during early perceptual processing 

of voices60. Other primates, such as marmosets and 
macaques, show vocalizations that are used to commu-
nicate and evoke responses in the PFC and amygdala61–65. 
Given the role of these regions in valence encoding41, 
these studies suggest that non-human primate calls may 
contain valence information.

Rodents emit ultrasonic vocalizations in the pres-
ence of conspecifics, and use these for social commu-
nication66,67; for example, to signal an affective state. 
In response to aversive stimuli, rats emit 22 kHz ultra-
sonic vocalizations68,69 that conspecifics use to learn 
about the valence of the stimuli despite not experienc-
ing the stimuli directly70. In mice, ultrasonic vocaliza-
tion emission is evoked by mating opportunities71,72 and 
to solicit maternal care73,74. Most research into rodent 
social vocalizations has focused on the neural circuits 
underlying their production, and thus little is known 
about their perception and the circuits that mediate their 
valence assignment.

Perception of olfactory social cues. Social odours carry 
crucial social information across species, such as kin-
ship, health and sex75–78. Rodents, cattle and pigs can 
perceive chemosensory alarm signals from their con-
specifics that signal potential danger79–81. Individuals 
with olfactory disorders, such as hyposmia and anosmia, 
report disruptions in their social life82, suggesting that 
olfaction has a social role in humans too.

In humans, smelling the sweat of students who were 
taking a final oral academic examination activated brain 
regions implicated in emotional processing such as the 
orbitofrontal cortex (OFC), insula and cingulate cor-
tex, as well as the fusiform gyrus, which is activated by 
emotional cues of other modalities83. In another study, 
smelling chemosensory cues from individuals perform-
ing their first skydive produced strong activation of the 
left amygdala84. Intriguingly, in both studies, the partic-
ipants did not report odour discrimination, suggesting 
that, despite the poor ability of humans to consciously 
perceive negative-valence signals in social odours, the 
human brain can perceive these signals and may alter 
behaviour without our awareness.

Rodents show an enriched ability to perceive social 
olfactory cues. Rodents can perceive predator and con-
specific chemosensory cues, and these cues affect social 
behaviour85,86. Pheromones, non-volatile chemosensory 
cues, are crucial for rodent social communication. They 
mark territory, signal social dominance, mediate aggression 
and attract mates87–91. Neurons in the rodent accessory 
olfactory bulb (OB) respond to urine and saliva, sources 
of pheromones, to encode the sex and genetic strain of the 
social stimulus92. The medial amygdala (MeA) is involved 
in various innate social behaviours such as parenting, 
aggression and mating, and shows a high level of social 
experience-dependent plasticity93–95. Furthermore, in 
rodents the MeA is activated in response to pheromones 
to guide social behaviours85. Beyond the MeA, other 
brain regions are important for the perception of social 
odours. In female mice, a subpopulation of neurons in 
the medial preoptic area (mPOA) of the hypothalamus 
express the neuropeptide neurotensin, and respond to 
urine from males preferentially to appetitive smells96. 

Box 2 | Aggression, altruism, empathy and observational learning

Here, we introduce the social behaviours and psychological constructs of aggression, 
altruism, empathy and observational learning, and explore some of the neural 
mechanisms thought to mediate them.

In mice, circuits for aggression — largely identified as those mediating increases in 
biting bouts and overall time spent attacking (including biting, tussling and lunging) — 
have been identified in mice in the ventromedial hypothalamus215,235,274,275, pinpointing 
neuronal ensembles that orchestrate complex social behaviours in a dynamic 
and experience-dependent manner276. Recent work extends the sensitivity of 
the ventromedial hypothalamus to social experience and implicates this region in the 
encoding of additional social experiences (such as social defeat), and the representation 
of environmental cues that predict these negative experiences277. Circuits involving the 
nucleus accumbens (NAc) in the ventral striatum that encode the rewarding aspects of 
aggression on others have been identified using a task in which mice perform an operant 
response to gain access to a conspecific over which they will exert their aggression278, 
with relevance to sadism and bullying. Furthermore, in primates, striatal neurons that 
encode reward also encode the social agent when there are two monkeys involved in 
the task279.

The notion of empathy, the ability to recognize the emotions of others and to take on 
that emotion280, is distinct from the related concept of altruism281 (although it has been 
conceptualized as correlated281), which focuses on helping another at one’s own 
expense. Altruism may rely on the ability to recognize distress in others, but does not 
necessarily require the taking on of the emotions of others282, as occurs in empathy. 
Studies in humans have identified the amygdala, insular cortex, orbitofrontal cortex 
(OFC) and anterior cingulate cortex (ACC) as key regions involved in empathy283, 
and mirror neurons are also theorized to facilitate empathy284.

Another important distinction is that between the related concepts of empathy and 
observational learning. In observational learning, an individual can learn about the 
valence of environmental stimuli, as well as appropriate responses to them, by observing 
another individual, without direct experience285. Observational learning can be applied 
to both positive and negative valence, providing an enormous adaptive advantage. For 
example, it could be costly or fatal to learn through direct experience that a predator is 
a threat; thus, learning that a predator is threatening by observing another animal’s 
escape responses or defensive behaviours in response to a predator-associated cue 
enables learning without the same cost. During observational learning, the ACC detects 
and represents information about the behavioural state of the social agent and routes 
this information to the basolateral amygdala (BLA), where ACC input is crucial for 
observational learning286. The related psychological constructs of empathy, cooperative 
and competitive decision-making and observational learning all implicate largely 
overlapping cortical circuits, including the ACC and BLA ensembles287–289, suggesting 
that the biological implementation of these related computations is also related.

Social dominance
The repertoire of behaviours 
expressed by higher ranking 
animals including winning 
during competition and 
species-specific body poses.
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Interestingly, optogenetic activation of this subpopula-
tion is rewarding even in the absence of social stimuli, 
and evokes dopamine release in the nucleus accumbens 
(NAc), a structure involved in reward processing96, sug-
gesting a direct overlap between positive-valence encod-
ing and social-stimulus encoding in the hypothalamus. 
Rodents also show encoding of social olfactory stimuli 
in the PFC97. Furthermore, the rodent medial prefron-
tal cortex (mPFC) plays a part in valence encoding98. 
Whether the same subpopulations of mPFC neurons 
that encode valence of non-social stimuli also stably 
encode social stimuli and their valence remains an open  
question.

Social cues of other modalities. In addition to the modal-
ities discussed above, social touch and visual perception 
of social stimuli are critical aspects of social interactions. 
Recent work suggests that the experience of social touch 
is subjective and involves the amygdala and other limbic 
structures48,49. For an in-depth review of social touch and 
its effects on emotional regulation, see reF.48. Visual per-
ception also exerts a powerful influence on social valence; 
in particular, the perception of facial expressions in pri-
mates requires the face fusiform area99 and STS100,101, both 
of which encode valence information from faces102,103. 
Mice also show facial expressions in response to pain, 
positive or negative stimuli104,105, suggesting that rodent 
homologues of these regions could facilitate social com-
munication in rodents as well. Overall, social attributes, 
signalled through various sensory modalities, can carry 
much inherent valence information.

Social scientists propose that social heuristics can 
provide simple intuitive rules to guide our social inter-
actions via quick generalizations of social attributes from 
personal experience106–109. These social heuristics prob-
ably rely on the rapid perception of valence, on the basis 
of social sensory information.

Social rank and valence assignment
Dominance hierarchies have long been described as 
a way in which social species organize group living110. 
Although the valence and social rank of a conspecific 
are unlikely to be independent variables, the relation-
ship between them is unclear. It probably depends on the 
stability of the hierarchy and an individual’s social rank, 
given that these two factors influence the stress levels of 
an individual111–113. For example, dominant animals may 
find some social stimuli more stressful than do subor-
dinates (for example, when the rank of the dominant 
animals is contested) and might find other stimuli less 
stressful than subordinates (for instance, when ranks are 
stable and resources are scarce). We propose a model 
in which the social context influences the perceived 
valence of social stimuli in a rank-dependent manner. 
Importantly, social valence can be modulated not only 
by perceived social rank but also by dominance expres-
sion. For example, a lower-ranking animal in a scarcity 
context might be forced to compete for resources and 
lose, making the valence assignment of a dominant 
individual negative.

In mice, an individual’s social rank correlates with 
neural activity differences in the PFC, amygdala,  

hypothalamic and brainstem nuclei114–117, and in 
macaques, social rank is associated with functional con-
nectivity differences in many of these same regions118. 
These baseline rank-dependent differences probably 
modulate how the brain perceives the social rank of 
conspecifics. The complex relationship between an 
individual’s social rank and their perception of others’ 
social rank is not clear; however, a study in mice suggests 
that the neural response to social cues (urine samples 
from other male mice) is influenced by the social rank 
of the mouse perceiving the cue116. This study highlights 
the importance of measuring social rank as a variable 
of interest.

Cortical encoding of social rank. Most research on how 
the brain represents social rank comes from studies in pri-
mates. Social-rank perception might occur early in sensory 
processing, as, in humans, STG activity correlates with 
dominance ratings of facial expressions119–121. Also, par-
ticipants asked to judge the social status of two unknown 
individuals showed increased functional MRI responses 
in the STS121. Given the role of the temporal cortex in 
perception of faces and valence in faces, we hypothesize 
that this STG and STS representation probably reflects 
processing of general facial and visual attributes linked 
to social standing.

The most robust representation of social rank is 
seen in the PFC, particularly the lateral PFC, both 
dorsal and ventral subregions. The human lateral PFC 
shows increased activation upon viewing high-ranking 
players or dominance-related postures122,123. In one of 
these studies122, destabilizing the hierarchy resulted 
in the mPFC becoming more active when viewing 
high-ranking individuals than low-ranking individuals.

This extra mPFC engagement in dynamic hierar-
chies is consistent with other studies showing that the 
mPFC is engaged by social-rank learning. In humans, 
functional MRI activity in the rostral mPFC corre-
lated with social-rank perception, and stimulation of 
this region improves social-rank learning124. In mice, 
mPFC neural population activity is predictive of rela-
tive social rank during social competition125. Similarly, 
in mice, individual neurons in the anterior cingulate 
cortex (ACC) encode relative rank, reward size and suc-
cess history during social competition126. Moreover, in 
humans, explicit judgement of social-status differences 
in a scene also engages mPFC activity121. However, one 
study suggested that the mPFC encodes social rank only 
when the participant is part of that hierarchy: when par-
ticipants learned about two hierarchies (one including 
the participant, and the other not), their mPFC activity 
correlated with social-rank learning only for the hierar-
chy that included them127. This suggests that the mPFC 
helps track the social alignment between the self and 
others to guide valence assignment. Indeed, the mPFC 
represents self–other distinctions across species125,128,129, 
and functional MRI work in humans showed mPFC 
responses were clustered into those for self, familiar oth-
ers and unfamiliar others130. Together, these results sug-
gest that the mPFC tracks relevant information regarding 
the ‘self ’ versus ‘other’ — including relative social-rank 
information — especially in dynamic situations.
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In addition to the mPFC and lateral PFC, subpopu-
lations of OFC neurons in monkeys respond differen-
tially to familiar faces of dominant versus subordinate 
conspecifics131, suggesting that the OFC may also encode 
others’ social rank. The OFC also tracks outcomes for 
the self and for others during cooperative and compet-
itive scenarios132. Both the mPFC and the OFC contain 
neurons that encode positive and negative valence133,134. 
Whether certain PFC cells encode both valence and 
social rank is not clear. However, considering how com-
mon mixed selectivity is in the PFC135–137, overlaps in 
valence and social-rank encoding probably exist.

Subcortical encoding of social rank. Compared with 
studies on cortical representation of social rank, the 
role of subcortical brain regions in encoding social-rank 
information has been less well studied. In macaques, 
single cells in the ventral striatum, a region important 
for reward processing, show changes in firing rate in 
response to dominant versus subordinate conspecifics’ 
faces, and overlap little with cells that respond to a liquid 
reward138. Thus, distinct neuronal subpopulations in the 
ventral striatum may encode valence and the rank of a 
conspecific.

When people are asked to learn the ranks of a group 
of men or a group of planets (as a non-social control), 
the activity of the anterior hippocampus (HPC) (analo-
gous to the ventral hippocampus (vHPC) in rodents) and 
the amygdala correlated with the social rank recalled; 
however, the anterior HPC also tracked the non-social 
hierarchy127. Activity in the anterior HPC and amyg-
dala also tracked social ranks in hierarchies including 
and not including the participants127. Furthermore, the 
amygdala and anterior HPC are coupled to the mPFC 
during updating of a hierarchy including the participant, 
but not during updating of a hierarchy that excluded the 
participant127. Amygdalar responses to high-ranking 
individuals were greater when participants were told 
a social hierarchy was unstable than when they were 
informed that social ranks were static and stable122. In 
macaques, the activity of the same amygdala cells that 
encode a rewarding stimulus predicts the social rank of 
conspecifics139, suggesting that the amygdala, unlike the 
striatum, uses valence-coding systems to encode social 
rank of conspecifics as well. Whether social-valence 
encoding guides social motivation in a rank-dependent 
manner remains unknown.

Circuits modulating hierarchy updating. Several recent 
optogenetic studies in mice are shedding light on the 
specific circuits that carry social rank information and 
affect social-dominance behaviour. Nonspecific stimu-
lation of the dorsal mPFC increases social-dominance 
behaviour and, often, subsequent social rank in male 
mice114. Two studies have implicated a thalamo-cortical 
circuit in social dominance. One showed that projec-
tions from the mediodorsal thalamus (MDT) to the 
dorsal mPFC undergo plasticity with winning that 
reinforces social-dominance behaviour, and that opto-
genetic stimulation of the MDT–dorsal mPFC circuit is 
sufficient to induce winning and increase social rank115. 
The other study showed that lesioning the MDT slowed 

the formation of a hierarchy, and that bidirectional 
manipulation of MDT modulated winning behaviour 
in a social-dominance task140. The same study showed 
that parvalbumin-expressing interneurons in the ACC 
receive direct projections from the MDT and modulate 
dominance behaviour. Altogether, these studies show 
that this thalamus–PFC pathway is important for estab-
lishing and maintaining social hierarchies. MDT inputs 
to the mPFC are probably necessary for the prefrontal 
representation of relative social rank observed in other 
studies across species124,125,127. Inputs from the basolateral 
amygdala (BLA) and vHPC to the mPFC are probably 
also necessary for social-rank encoding and may mod-
ulate social dominance behaviour, given the functional 
connectivity observed during hierarchy updating127, the 
role of the vHPC in social memory141 and the role of 
the BLA in valence associative learning142.

As the amygdala, HPC and mPFC signal social 
rank and are functionally connected, we hypothesize 
that social-rank information is transmitted from the 
mPFC and vHPC to the BLA, where it is integrated with 
valence information, and that it returns from the BLA 
to the mPFC and HPC for an iterative loop that updates 
on the basis of experience. Furthermore, given that 
the MDT–mPFC circuit is important for cognition143, 
this pathway could serve to facilitate the cognitive and 
social-behavioural changes associated with social-rank 
learning. Given that social rank is dynamic and can 
change depending on the social context, the social 
rank of the individual and the other could provide a 
context-dependent factor to modulate social valence 
assignment. In addition, an individual’s internal state 
(for example, their hunger or isolation level) could 
change how social rank influences valence assignment 
of a conspecific.

Social memory and valence assignment
Behavioural evidence supports the idea that social 
history affects interactions with a conspecific and the 
valence assigned to that conspecific. Humans and ani-
mals interact differently with strangers versus familiar 
conspecifics144–148. However, the neural dynamics and 
circuits underlying social history-related changes are 
unknown. Although social history is a broad term, 
several factors can be easily controlled and measured: 
familiarity, group size and social ranks of the individuals 
interacting. This parameterization enables social history 
to be studied in the laboratory setting. Unfortunately, in 
almost all studies of the neural circuits of sociability and 
social motivation to date, participants interacted with a 
novel conspecific, and neither group size nor social ranks 
were addressed as variables. Whether social-motivation 
circuits differ depending on social history is still an open 
question. Given the rich literature, we focus on the neu-
ral circuits for social recognition and social memory, and 
how they overlap with valence systems.

Hippocampal circuits for recognition. How does the brain 
recognize someone? The HPC is crucial for recognizing 
others and in forming and maintaining social memo-
ries. Individuals with hippocampal lesions are unable 
to recognize familiar faces or other familiar objects149. 

Mixed selectivity
The ability of neurons  
to respond consistently to 
multiple, statistically 
independent variables.

Valence associative learning
Learning the association 
between two or more stimuli  
in which one of the stimuli has 
a positive or negative valence.

Familiarity
The degree to which two 
individuals know each other.
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In the rodent social-recognition or social-discrimination 
test5,8,150, a mouse explores a chamber with two mice — 
a familiar and a novel conspecific — and the familiar 
mouse can be first encountered minutes or the day 
before testing to probe short-term or long-term social 
memory, respectively6.

Several studies have dissected the intrahippocam-
pal circuits needed for social memory. The HPC con-
tains subregions called the dentate gyrus and CA1, 
CA2 and CA3, which in turn have dorsal and ventral 
subdivisions151. Various hippocampal subregions play 
a part in social-memory encoding and the retrieval of 
social memories. For example, in rodents, the lateral 
entorhinal cortical projection to the dorsal dentate 
gyrus is necessary for the retrieval of short-term social 
memories152, and lesioning or ablating the dorsal CA2 
disrupts social recognition but not sociability or other 
spatial-memory functions153,154. Furthermore, a study 
involving optogenetic and chemogenetic manipulation 
of the dorsal CA2 demonstrated that this region has a 
role in encoding, consolidation and retrieval of social 
memories7.

The neuropeptides oxytocin and vasopressin act in 
the HPC to facilitate social memory. Oxytocin receptors 
(OXTRs) are prominently expressed in the HPC155,156. 
Deletion of Oxtr in the rodent CA2 and CA3 disrupts 
7-day-old, but not 1-day-old, social memory, and appli-
cation of an Oxtr agonist facilitates potentiation in dor-
sal CA2 pyramidal neurons ex vivo157. However, another 
study showed that OXTRs in the dorsal dentate gyrus, 
CA2 and CA3 are necessary for short-term social rec-
ognition in the order of minutes155. Furthermore, input 
to neurons in the dorsal CA2 that express vasopressin 
receptor 1B from vasopressin-positive neurons in the 
paraventricular hypothalamus is necessary for encoding, 
but not for retrieving, social memories158.

The vHPC and several of its inputs and outputs also 
have a role in social memory and recognition. The pro-
jection from the dorsal CA2 and CA3 to the posterior 
CA1 is necessary for the retrieval of short-term social 
memories155, and the projection from the dorsal CA2 
to the ventral CA1 is similarly necessary for the for-
mation of short-term social memory7. Silencing either 
the ventral CA3 (reF.159) or the ventral CA1 (reF.141) dis-
rupts social-memory recall. The number of ventral CA1 
cells that encode a conspecific increases over 3 days of 
co-housing141, suggesting that social memory engrams 
in the ventral CA1 reflect familiarity level. Ventral CA1 
projections to the NAc141 and to the mPFC160 are both 
necessary for short-term social memory. Furthermore, 
neurons in the dorsal CA2 target neurons in part of 
the ventral CA1 that project to the NAc, providing a 
multisynapse circuit that mediates social memory7.

By tagging activated cells161,162, a recent study shows 
that the vHPC contains mostly separable subpopulations 
of cells that encode either negative or positive valence163. 
However, these subpopulations are not anatomically 
divergent, as both vHPC–BLA and vHPC–NAc neu-
rons routed negative and positive valence. By contrast, 
similarly flexible valence routing was not seen in the 
vHPC–mPFC pathway163. Collectively, these studies ena-
ble speculation about how valence signals in the vHPC 

might be integrated with social-memory information 
to control behaviour. Given that the vHPC–NAc path-
way is necessary for social memory141 and encodes both 
positive-valence and negative-valence information163, 
it could induce social aversion or social preference 
depending on the context, whereas the vHPC–mPFC 
pathway routes valence-independent social identity 
signals, such as social rank.

Other circuits for social memory. Beyond the HPC, other 
circuits are also involved in social memory — particularly 
mPFC–NAc and mPFC–amygdala circuits. In rodents,  
neuropeptide signalling in the MeA is central to social- 
memory processes8,164,165 and encoding in the MeA changes 
with social experience, such as sexual experience93–95 
(reviewed elsewhere95).

In addition, several prefrontal top-down circuits show 
a role in social memory — particularly those connecting 
to subcortical regions that have a well-established role 
in valence encoding (NAc and BLA). As social cues 
become familiar, the responses of mPFC cells to them 
decrease97, suggesting that the mPFC signals familiarity 
to guide social behaviour. Furthermore, projections from 
the infralimbic and prelimbic subdivisions of the mPFC 
to the NAc are implicated in social-memory processes. 
Inhibition of prelimbic neurons active during social inter-
action with a novel animal impairs social recognition, 
but not social preference166, implicating these neurons  
in social memory. These neurons are more likely to 
express D1 dopamine receptors than D2 receptors, sug-
gesting their activity might be modulated by dopamine. 
Furthermore, inhibition of prelimbic NAc-projecting 
neurons disrupted recall of short-term social memory166. 
Consistent with this, prelimbic NAc-projecting neurons 
encode a combination of social and spatial information 
and have a role in spatial–social memory117. Another study 
showed that infralimbic neurons projecting to the shell of 
the NAc were more activated during exposure to familiar 
mice than novel mice and that this pathway  was neces-
sary for long-term social-memory recall167. Together, 
these studies implicate pathways from both mPFC subdi-
visions to the NAc in social memory. Finally, stimulating 
OXTR-expressing mPFC neurons projecting to the BLA 
impaired short-term social-memory recall, but not social 
preference or anxiety-like behaviour168.

Whether valence assignment of the social agent affects 
the circuits underlying social memory is unknown. 
Rodents can detect pheromonal signals of dominance in 
strangers169–171, and a recent study directly compared neu-
ronal activation (assessed through immediate early gene 
expression) evoked by urine from familiar or unfamiliar 
dominant and subordinate conspecifics116. The neural 
responses of many brain regions, including the mPFC  
and amygdala, were modulated by a combination of 
familiarity and the social ranks of the test mouse and 
conspecific, implying that social history can modulate 
how the brain processes social cues. We hypothesize 
that, given the overlapping circuitry of social memory 
and valence processing, overlapping subpopulations 
of cells encode valence and social memory to support 
social memories with valence-specific information. 
Social memory and valence systems, together, can 

Engrams
ensembles of neurons that 
undergo enduring changes 
during learning and facilitate 
memory recall.

Social preference
The preference for social 
stimuli (as opposed to 
non-social stimuli) observed in 
rodents.

Spatial–social memory
Memory of the space in which 
a social interaction occurred, 
often indexed by changes  
in the time spent in that  
social space.
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support valence assignment for familiar individuals 
based on social rank and context, by recalling memories 
of experiences with that individual in a given context.

Notably, animals can interact with the same indi-
viduals for long periods, and social valence assignment 
can change across time; therefore, there is a need to 
study longer-term social memories. Future work may 
determine whether the neural circuits and dynamics 
underlying long-term familiarity are the same as those 
underlying social memory over shorter-term periods of 
minutes or a day, and whether social rank of a conspe-
cific affects the neural circuits underlying social mem-
ory. Moreover, the social attributes of familiar animals 
used in experiments should be examined as a variable 
in future work.

Impacts of social isolation
Following acute periods of social isolation, various 
animals — including rodents and humans — perform 
prosocial behaviours such as rebound social interaction 
and increased affiliative behaviours3,32,33,172,173. However, 
with chronic social isolation, flies, rodents and humans 
display antisocial behaviours, such as aggression, avoid-
ance and social anxiety25,26,174, that may, in humans, 
manifest in the form of mental health disorders. These 
sequelae present an intriguing paradox — namely, how 
does the same experience of social isolation result in 
opposing effects on behaviour simply based on the 
duration of the experience (FigS. 2 and 3)? How can  
the shift from prosocial behaviour associated with brief 
isolation to the antisocial behaviour associated with 
prolonged isolation be explained (Fig. 3)? Is this shift 
in behaviour the product of a change in the valence 
of social conspecifics from positive to negative as the 
period of isolation extends? When do deficits in social 
contact no longer drive prosocial behaviour? What adap-
tations occur when the frequency of opportunities for 

social engagement changes in a long-lasting manner? 
Recent advances have begun to shed light on how the 
brain encodes, or adapts in the face of, social isolation 
of various durations. Below, we discuss recent literature 
on the neural circuits, mechanisms and signalling mol-
ecules associated with the housing condition of an ani-
mal, highlighting studies focused on acute and chronic 
isolation and their impact on social valence.

Acute social isolation. The past decade has seen a con-
siderable increase in understanding how the brain and 
behaviour are altered by housing conditions such as 
social isolation. Unfortunately, the notions of ‘acute’ 
versus ‘prolonged’ isolation are often relative, with no 
standard agreement for definitions in terms of lengths of 
time. Presumably, a distinction between these could be 
ascertained for each species or experimental backdrop, 
by determining the point at which isolation leads to a 
shift from performing prosocial behaviour to antisocial 
behaviour. However, isolation studies are often limited 
by a focus on either acute or chronic isolation, mak-
ing this distinction unfeasible. Thus, here, we refer to 
periods shorter than 1 week as ‘acute’ and those longer 
than 2 weeks as chronic. These temporal cut-offs were 
selected based on the behavioural and neurobiological 
effects of each, with the behavioural effects of social 
isolation remaining similar from 1 h to 1 week, and the 
effects of chronic isolation emerging after 2 weeks of 
social isolation minimally and worsening with more 
time in isolation26. We focus on the effects of isolation 
in model systems, as investigations into the effects of 
isolation in humans has been well discussed in previous 
reviews175,176.

Social isolation has long been associated with 
negative effects on the brain and body12,13,20,175,177–179. 
However, more recent research has demonstrated the 
positive, prosocial effects of brief periods of social 
isolation3,4,32,33,180–183. Indeed, we previously found that 
24 h of social deprivation resulted in mice showing an 
increase in motivation to seek social interaction with 
a novel conspecific, or ‘rebound sociability’32. This 
rebound sociability required midbrain dopamine neu-
rons in the dorsal raphe nucleus (DRN), and correlated 
with an increase in activity of these neurons, supporting 
the intriguing idea that rebound sociability after isola-
tion engages a DRN-specific dopaminergic pathway. 
Consistent with this, functional MRI blood oxygen 
level-dependent responses to social stimuli in the mid-
brain of humans were greater after 10 h of social isolation 
than before isolation33.

An overall role for dopamine in controlling social 
reward is well supported by the literature, as dopamine 
signalling by the ventral tegmental area has been impli-
cated in the control of social interaction and reward 
under standard (group) housing conditions184–186. The 
sites of dopamine action to exert the effects of rebound 
sociability remain unknown, but dopaminergic neu-
rons in the DRN project to various regions implicated 
in social and emotional regulation (see below). Notably, 
D1 and D2 receptors in the NAc are required for acute 
isolation to promote social interaction in rats187. Thus, 
region-specific dopamine signalling might mediate 
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Fig. 3 | A model of the temporal effects of social isolation. As social isolation increases, 
prosocial behaviour first increases and then decreases as the duration of isolation extends, 
whereas antisocial behaviours increase. We hypothesize that the valence of a social 
conspecific transitions from neutral to positive to negative as an animal transitions from 
group housing to acute and then chronic isolation. A simplified account of how this could 
be achieved is depicted, whereby circuits from brain regions or molecules involved in 
encoding the internal states produced by isolation allow for the increase (acute isolation) 
or decrease (chronic isolation) in social interaction, by promoting or inhibiting activity in 
downstream social-motivation centres.

Rebound social interaction
The increase in social 
interaction observed 
immediately after a social 
deficit.

Social anxiety
The decrease in social 
interaction and/or social 
preference observed following 
a negative social experience 
(for example, prolonged 
isolation, social defeat  
and so on).
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prosocial behaviour depending on environmental 
conditions, although the role of such signalling during 
the shift from acute to chronic isolation has not been 
examined.

Interestingly, the potentially rewarding effects of 
rebound sociability seem to interact with social status: 
low-ranking animals exhibit less rebound sociabil-
ity and DRN dopamine activity than do high-ranking 
animals32. Thus, the value of (even a brief) social inter-
action strongly depends on an animal’s social standing, 
revealing the bidirectional relationship between housing 
condition and social rank in determining the rewarding 
value of a conspecific.

Beyond dopamine changes, acute social isolation also 
induces various physiological and behavioural changes, 
including altered immune responses, changes to hypo-
thalamus–pituitary–adrenal (HPA) axis activation, and 
heightened arousal and defensive behaviours (reviewed 
elsewhere4). These changes signal an acute state of 
social withdrawal and may set the stage for increased 
responding to subsequent social stimuli.

Finally, acute social isolation is associated with 
changes in various signalling molecules across many 
brain regions (reviewed elsewhere3). Briefly, acute iso-
lation has been shown to produce both increases or 
decreases in the expression of corticotropin-releasing 
hormone (CRH) and/or CRH receptor depending on 
the brain region interrogated188,189, as well as decreased 
excitability of CRF-expressing neurons in the paraven-
tricular nucleus of the hypothalamus (PVN)190. Acute 
isolation also produces a decrease in mPFC GABA 
levels191. Oxytocin, known for its role in pair bonding192, 
is also implicated in social isolation. For example, che-
mogenetic inhibition of oxytocinergic neurons in the 
PVN reverses the effects of acute isolation on social 
interaction193. Also, chronic systemic delivery of oxytocin 
blocks the effects of prolonged isolation on subsequent 
antisocial behaviour194,195. These data highlight the mul-
tiregional, multi-mechanistic and multi-neurochemical 
way in which brief periods of social isolation can affect 
prosocial behaviour.

Chronic social isolation. Unlike acute isolation, pro-
longed periods of social isolation produce deleterious 
effects on behaviour, including increased avoidance of 
social conspecifics and increased antisocial behaviours. 
In humans, loneliness — the internal state of perceived 
social isolation — is associated with depression, irrita-
bility and increased mortality176. Solitary confinement, 
the most extreme form of social deprivation, is linked 
to poor mental health outcomes, aggression and loss of 
emotional control196.

For decades, the study of chronic social isolation in 
primates had been deemed unethical following the noto-
rious studies of maternal separation in rhesus monkeys 
by Harlow and colleagues showing that infant monkeys 
preferred the warm comfort of a soft mother-like struc-
ture over a wire mother that supplied milk, suggesting 
that the soft touch, or ‘contact comfort’, is more impor-
tant than a food source197,198. These studies resulted in 
long-lasting and largely irreversible negative conse-
quences on the maternally deprived infants197,198. As a 

result, research on early-life stress, including maternal 
separation, was largely relegated to rodent models199–204, 
and support for research into social isolation was 
substantially reduced.

Now, in light of a pandemic that has precipitated an 
unprecedented level of social isolation, social distanc-
ing and social exclusion, the prominent omission in our 
understanding of the neurobiological consequences of 
reduced social contact is glaring. Poignantly, the pan-
demic has produced an increase in violence as well as 
depression and anxiety, hypothesized to constitute 
a ‘second pandemic’ of social isolation205–207.

Chronic social isolation generates an increase in 
antisocial behaviour in various species. Long-term 
isolation has long been used in fruitflies, mice, rats 
and other species to increase aggressivity towards a 
conspecific28,29,208–212 in males and females213–215. In 
addition, chronic social isolation reduces social inves-
tigation and motivation to interact with a conspecific26. 
Importantly, in mice, acute isolation had no effect on 
aggression or alterations in fear, in contrast to chronic 
isolation, which increases aggressivity and persistent fear 
responses26. In the same study, chronic social isolation 
was shown to increase threat responsivity, fear-related 
behaviours and risk-taking behaviours, and to reduce 
time spent in a chamber containing a novel conspe-
cific in the three-chamber assay. These results contrast 
with findings that acutely isolated mice spend more 
time interacting with a conspecific in the same assay32, 
and that other species similarly show an increase in 
social interaction after acute isolation172,216,217. These 
results suggest that prolonged social isolation produces 
a unique, deleterious internal state.

Recently, there has been considerable progress in our 
understanding of the neural circuitry and molecular 
mechanisms that underlie the effects of prolonged social 
isolation. For example, one study of the effects of chronic 
social isolation in juvenile mice218 showed that mPFC 
neurons have a dissociable role in isolation-induced 
aggression in males and isolation-induced reductions 
in sociability in females. These behavioural changes 
correlate with changes in the spiking activity of cells 
in regions downstream of the mPFC — including the 
BLA and ventral tegmental area in males and females, 
respectively. These studies provide further support for 
the role of mPFC in providing top-down control of 
aggression219.

We recently implicated subcortical structures in 
the brain state produced by prolonged social isola-
tion. Multiplexed loss-of-function approaches revealed 
dissociable roles for the neuropeptide tachykinin 2  
(TAC2) in the anterior dorsal bed nucleus of the 
stria terminalis (BNST), dorsomedial hypothalamus 
(DMH) and central amygdala (CeA) in the control of 
isolation-induced persistent fear, enhanced aggression 
and acute fear, respectively26. In addition, brain-wide 
overexpression of TAC2 combined with chemogenetic 
activation of TAC2-expressing neurons induced behav-
iours in group-housed mice that mimicked those of 
isolated mice, including increased fighting and persis-
tent fear responses, and these effects could be reversed 
by a TAC2-receptor antagonist26. Therefore, TAC2 

Threat responsivity
The degree to which a host  
of behavioural responses are 
expressed in response to a 
threatening, noxious stimulus, 
including: freezing, darting, 
activity bursting, flinching, 
vocalizations and so on.
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signalling is necessary and sufficient to induce a social  
isolation-like state. Although neuromodulators and neuro-
peptidergic subpopulations have been implicated in the 
regulation of internal states and certain behaviours, 
respectively220–225, this study describes how a single neuro-
peptide system acts in different brain regions in concert  
to mediate the internal state produced by chronic social 
isolation and exert control over isolation-induced 
behaviours.

Many studies also suggest a role for glucocorticoids 
and the HPA axis in regulation of the effects of prolonged 
social isolation (reviewed elsewhere179). Similar to other 
stressors, social isolation increases cortisol levels176,226. 
Intriguingly, whereas acute social isolation results in 
various changes in the expression of HPA-related genes, 
these changes usually dissipate as the isolation period 
grows, suggesting that the HPA axis soon adapts to 
counteract the effects of isolation179. By contrast, fol-
lowing chronic periods of social isolation, HPA axis 
dysregulation is more likely to persist179.

An integrated social homeostasis model. We believe that 
social isolation is unique among stressors in its ability 
to have opposing effects on social behaviour depending 
on its duration. Indeed, opposing effects of acute versus 
chronic social isolation on feeding and sleep have also 
been identified, whereby chronic, but not acute, social 
isolation increases feeding behaviour and reduces sleep 
in Drosophila227. Other stressors produce effects that may 
vary with the stressor’s intensity, duration or proxim-
ity, but they tend to maintain the same negative effects 
and valence228–234. What is the evolutionary benefit of 
the contrasting effects of short-term and long-term 
isolation?

We have previously hypothesized that, similar to 
hunger, isolation engages a homeostatic mechanism 
to appro priately control an animal’s response to a social 
conspecific depending on housing conditions3,4. Thus, 
following acute social isolation, the detector would send 
information to the control centre, which would compute 
a deficit relative to the homeostatic set point and, thus, 
activate effector systems that would drive the animal  
to emit behaviours that would increase social contact to  
bring the detected level of social contact back to the 
homeostatic set point1,35. Indeed, the idea that low lev-
els of stress are biologically beneficial has long been 
supported, consistent with the prosocial behavioural 
response following acute isolation33,172.

How can the same condition (isolation) and the same 
stimulus (social group) shift from positive to negative 
valence? As described above, short periods of acute 
social isolation produce prosocial behaviour, which 
switches to antisocial behaviour as the period of isola-
tion increases. Thus, we hypothesize that the valence 
of the same social stimuli would shift from positive to 
negative depending on whether there is a perceived defi-
cit or surplus of social contact detected relative to the 
social homeostatic set point, respectively (Fig. 3). With 
acute isolation, the effector system is activated, increas-
ing correction effort (energy/time/resource expenditure 
towards obtaining the homeostatic set point, the pre-
ferred optimal). When an acutely isolated individual 

is reintroduced to the social group, a rebound of social 
interaction and affiliative behaviour may serve to restore 
the detected social contact to the homeostatic set point. 
By contrast, prolonged isolation may eventually trigger 
the recalibration of the social contact optimum (known 
as ‘set point adaptation’)4, such that the previous opti-
mum level of social contact may now be perceived as a 
surplus. According to this hypothesis, chronically over-
crowding animals would also cause a resetting of social 
homeostasis that would increase future basal preferences 
for social contact. These models provide a theoretical 
framework by which the divergent effects of acute and 
chronic stress can be reconciled4.

It should be noted that this hypothesis suggests 
that all antisocial behaviours are elicited by or directed 
towards a social stimulus with a negative valence. Such 
a hypothesis would seem to contrast with the finding 
that aggression is rewarding, such that rodents will per-
form operant behaviours to receive access to a conspe-
cific whom it can attack235. Importantly, however, such 
studies often require that the conspecific mouse is more 
docile (often by having previously and repeatedly been 
defeated) and that the aggressor mouse is prescreened for 
increased aggression-seeking behaviour or has been pre-
viously exposed to fighting experiences in which it ‘won’. 
In contrast to these set-ups, social isolation-induced 
aggression may occur with no prior aggression training 
or knowledge of the potential ‘outcome’ of an upcoming 
social interaction236. This argues against the idea that 
opponents during attack are attributed with a positive 
valence. Furthermore, although an animal might seek 
an aggressive encounter, this does not necessarily distin-
guish between the rewarding properties of ‘winning’ and 
the rewarding nature of fighting. Additional studies that 
manipulate variables related to conspecific valence and 
reward are warranted to further isolate the mechanisms 
controlling social valence during acute versus prolonged 
social isolation.

Conclusions and looking forward
In this Review, we have defined social valence, reviewed 
the rich literature in this growing field enabled by new 
technologies237–240 and put forth a simple conceptual 
framework outlining testable hypotheses to probe 
the key parameters in socio-emotional processes. For 
example, when animals are in competition, they repre-
sent outcomes for the self and the other separately125,132. 
We hypothesize that neurons in non-overlapping 
ensembles241 may help represent the other’s out-
come as either aligned (overlapping) or orthogonal 
(non-overlapping) depending on whether or not the 
animals are in cooperation (aligned representations 
for self and other) or in competition (orthogonal rep-
resentations for self and other)125. More empirical data 
will be needed to inform construction of a quantita-
tive, predictive model for how both internal inputs (for 
example, relating to hunger, social memory and emotion 
state) and external inputs (for instance, resource scar-
city, dominance behaviours exhibited by conspecifics 
and competitive success) are integrated and weighted 
to ultimately determine behaviours from the individual 
and other social agents.

Homeostatic set point
Within any homeostatic 
system, there is a control 
centre that stores a ‘set point’ 
and computes the difference 
between the detected input 
and the optimal set point.
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But how is social valence constructed, and what 
information is integrated to abstract down to the gen-
eral property of valence? Despite our knowledge of  
the individual factors that influence social valence and 
their individual neural systems, we do not know how they  
interact with each other. Future experiments could test 
the hypothesis that they have a hierarchical nature, with 
some factors, such as the isolation state, being higher 
in the hierarchy and weighted more for social valence 
assignment than other factors. Alternatively, attributes 
that contribute to social recognition and valence iden-
tification from features (such as faces, voices and so 
on) could have the largest role. How social attributes 
and familiarity interact is unknown, and future experi-
ments could address how social history and memories 
affect social attribute perception. Partially overlapping 
neural circuits are involved in the perception of social 
attributes, social rank and history, and many of these 
contain subpopulations of neurons that encode valence 
(including those in the mPFC, ACC, BLA, HPC and 
NAc), highlighting a potential neural mechanism for 
social valence assignment.

As a field, the study of the neural mechanisms of 
social hierarchies is still in its infancy but animal models 
and evidence of both innate and learned mechanisms 
to support hierarchies and social-rank encoding are 
already proliferating9. New studies that take into account 
previous history of group composition and size will be 
crucial to understand how history affects rank develop-
ment and hierarchical placing, whereas other studies 
in more controlled environments can dissect how the 
mechanisms of reward and aversion encoding affect 
social hierarchy formation. Work across species sug-
gests differences in the dopaminergic and serotonergic 
systems in social dominance242–246. Considering the role 
of neuromodulation in valence assignment133,247,248, future 
work may focus on understanding how neuromodula-
tory systems contribute to rank-dependent social valence 
assignment.

Interestingly, social isolation itself seems to be a pow-
erful modulator of social valence. We speculate that iso-
lation is a powerful modulator because of evolutionary 
drives and the importance of socializing for reproduc-
tion and defence. Furthermore, we have theorized that 
the state of social isolation influences the social valence 
of other social factors. In this model, chronic isolation 
alters how attributes, history and rank are perceived. 
Few studies have looked at how isolation state affects 
other social factors and their neural circuits and dynam-
ics. For example, is the increase in aggression seen after 
social isolation as rewarding as aggression seen during 
territorial defence? Which factors can explain the effects 
of prolonged isolation on reducing approach behaviour 
but also increasing aggression simultaneously? Can 
we uncouple the valence assigned to a social conspe-
cific from the valence assigned to the social interaction 
(such as a fighting episode) experienced with that same 
conspecific? Also, what are the circuit or neurochemical 
mechanisms that explain an animal’s shift in behaviour 
from acute to prolonged social isolation? Is this shift 
more or less dramatic depending on an animal’s posi-
tion in its social hierarchy? At least one study indicates 
that social rank can affect the consequences of social 
isolation32, suggesting that social factors can interact 
with the isolation state to affect social valence assign-
ment. Are there ways to protect against the deleterious 
effects of prolonged isolation? What role does control, 
or the perception of control, have in the development of 
these negative effects? Future studies aimed at teasing 
apart these factors will shed light on the neurobiology 
underlying social isolation and its impact on behaviour.

Collectively, understanding how social perception, 
contextual factors, prior history and isolation state are 
integrated in the brain to control social motivation is 
vital, given the high prevalence of dysregulated social 
behaviour in psychiatric and neurological disorders249.
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