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Abstract

An essential component in animal behavior is the ability to process emotion and
dissociate among positive and negative valence in response to a rewarding or aversive
stimulus. The medial prefrontal cortex (mPFC)—responsible for higher order executive
functions that include cognition, learning, and working memory; and is also involved in
sociability—plays amajor role in emotional processing and control. Although the amyg-
dala is widely regarded as the “emotional hub,” the mPFC encodes for context-specific
salience and elicits top-down control over limbic circuitry. The mPFC can then conduct
behavioral responses, via cortico-striatal and cortico-brainstem pathways, that corre-
spond to emotional stimuli. Evidence shows that abnormalities within the mPFC lead
to sociability deficits, working memory impairments, and drug-seeking behavior that
include addiction and compulsive disorders; as well as conditions such as anhedonia.
Recent studies investigate the effects of aberrant salience processing on cortical circuitry
and neuronal populations associated with these behaviors. In this chapter, we discuss
mPFC valence processing, neuroanatomical connections, and physiological substrates
involved in mPFC-associated behavior. We review neurocomputational and theoretical
models such as “mixed selectivity,” that describe cognitive control, attentiveness, and
motivational drives. Using this knowledge, we describe the effects of valence imbalances
and its influence onmPFC neural pathways that contribute to deficits in social cognition,
while understanding the effects in addiction/compulsive behaviors and anhedonia.

1. Introduction

The medial prefrontal cortex (mPFC), a prominent brain region located

within the frontal lobe, is primarily responsible for functions that include

decision-making processes and judgement (Bechara, Damasio, & Damasio,

2000); attentional processing (Miller & Buschman, 2013), learning and

memory consolidation (Euston, Gruber, & McNaughton, 2012); as well as

working memory (Goldman-Rakic, 1996; Sawaguchi & Goldman-Rakic,

1991), social cognition (Forbes & Grafman, 2010) and emotional processing

(Etkin, Egner, & Kalisch, 2011). However, this chapter will highlight the crit-

ical role of mPFC circuits and neuronal ensembles in emotional processing in

the context of mood disorders, drug addiction and social cognition due to their

direct relevance to emotional regulation, and provide a more harmonious and
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unified view of mPFC function incorporating both circuit-level and systems-

level insights and conceptual frameworks.

An important feature in emotional processing is the ability to integrate sen-

sory information—via external inputs and homeostatic internal states—to trig-

ger a specific emotional and behavioral response. In animals, emotions can

impact survival, reproduction, motivation, and decision-making processes.

From a basic science perspective, the urgency is necessitated by the rapid

proliferation of literature in two diametrically-opposed conceptual frame-

works underpinning PFC function. We have witnessed the paradigm-

shifting emergence of a systems-level conceptual framework highlighting

(nonlinear) “mixed selectivity” of PFC neurons, which not only suggests that

individual neurons may be selectively responsive to many parameters under

different contexts and are thereby recruited to multiple, seemingly-distinct

functions in different contexts, but also provides a systems-level explanation

for how the mPFC is endowed with high functioning processing power

(Allsop, Vander Weele, Wichmann, & Tye, 2014; Johnston, Palmer, &

Freedman, 2020; Muir, Lopez, & Bagot, 2019; Riga et al., 2014;

Vander Weele et al., 2018; Vander Weele, Siciliano, & Tye, 2018).

The concept of flexibility in function is juxtaposed with accumulating

evidence—and canonical circuit diagrams—depicting PFC circuits as

for diverse, but implicitly fixed, functions ascribed to specific components

by the input-output (“hardwired”) architecture of the circuit. (Allsop

et al., 2014; Muir et al., 2019; Riga et al., 2014; Siciliano et al., 2019;

Vander Weele et al., 2018; Vander Weele, Siciliano, & Tye, 2018).

The often-overlooked function of mPFC valence processing is essential

in distinguishing among motivational drives of reward and aversion. In the

two-dimensional model of valence and arousal (Lang, 1995), valence is

assigned as a positive (pleasant) or negative (unpleasant) hedonic value,

whereas arousal illustrates the intensity or degree of the emotional state

(Lang, Bradley, & Cuthbert, 1990; Russell, 1980; Tye, 2018). Indeed, the

mPFC provides context-dependent valence processing that influences

behaviors.

The mPFC elicits top-down control over subcortical regions such as the

basal ganglia and limbic structures that affect memory, motivation, and emo-

tional behaviors (Miller & Cohen, 2001). Consequently, mPFC dysfunction

alters behavioral output. For instance, lesions to the mPFC and orbital fron-

tal cortex (OFC) reveal a loss of emotional inhibitory control, impaired

attentional processing (Dias, Robbins, &Roberts, 1996), reactive aggression

(Anderson et al., 2007; Grafman et al., 1996; Pennington & Bennetto,
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1993), and a reduction in social cognition (Blair & Cipolotti, 2000; Hornak,

Rolls, & Wade, 1996). Other studies showed the mPFC is implicated in

context-dependent drug-reward seeking behavior and compulsive disorders

(Bossert et al., 2011, 2012), and displays disrupted processing during anhe-

donia due to dopamine (DA) imbalances (Callicott et al., 2003; Ferenczi

et al., 2016; Hamani et al., 2011).

In an effort to better understand how seemingly static circuits mediate

these dynamic behaviors, we review neurocomputational models of mixed

selectivity, that describe complex and prominent features of the mPFC, and

integrate circuit-level function into a conceptual framework in which to

understand valence processing mPFC circuits across a wide-range of

behaviors.

We highlight the role of themPFC in emotional valence processing with a

focus on mPFC neural circuits mediating reward and social behaviors.

Although themPFC is involved inmyriad of emotional behaviors that include

fear expression/extinction and response to threat (Sotres-Bayon & Quirk,

2010), we focus on the mPFC circuits encoding valence and its role in social

behaviors, and how valence processing is disrupted during addiction and

anhedonia.

2. The mPFC encodes context-specific valence
processing

2.1 Emotional processing in the mPFC vs the amygdala
While the limbic system has been largely conserved across evolution

( Janak & Tye, 2015), the PFC represents the most dramatic and significant

evolutionary changes in the brain (Fig. 1). Among these species, the PFC is

considerably larger in primates, and largest in absolute size within humans

(Brodmann, 1909; Semendeferi, Damasio, Frank, & Van Hoesen, 1997;

Semendeferi, Lu, Schenker, & Damasio, 2002), suggesting a major role

for higher-order functional processing in this region. The human prefrontal

cortex (PFC) can be divided into dorsolateral (dlPFC), ventrolateral

(vlPFC), dorsomedial (dmPFC), ventromedial (vmPFC) and orbitofrontal

(OFC) regions (Passingham&Wise, 2014); although neuroanatomists argue

the topographic maps of subdivisions within the PFC (Carmichael & Price,

1994; Ong€ur, Ferry, & Price, 2003; Petrides, 1995). The mPFC in rodents,

including mouse and rats, can be subdivided into three primary regions: the

anterior cingulate cortex (ACC), the prelimbic cortex (PL) and infralimbic

cortex (IL) (Heidbreder & Groenewegen, 2003; Ong€ur & Price, 2000).
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However, some studies include the secondary motor cortex (M2) in the

mPFC (Donoghue & Wise, 1982; Gabbott, Warner, Jays, Salway, &

Busby, 2005), which remains debatable (Laubach, Amarante, Swanson, &

White, 2018).
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Fig. 1 Evolutionary changes of the PFC across species. The relative size and location of the
prefrontal cortex (PFC; red) significantly differs among species: zebrafish (none), pigeon,
mouse, marmoset, macaque, and human. Analogous PFC subregions are represented in
coronal sections in the mouse, marmoset and human. Prelimbic cortex (yellow), anterior
cingulate cortex (purple), orbitofrontal cortex (blue), and infralimbic (green).
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The mPFC plays an essential role in regulating emotions and salience

processing by integrating multimodal sensory inputs and facilitating

behavioral outputs dependent on context (Miller, 1999; Miller & Cohen,

2001; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004). In this

respect, the mPFC elicits top-down control of limbic and brainstem regions

that influence emotional behavior (Grace, Floresco, Goto, & Lodge, 2007;

Lee & D’Esposito, 2012; Ochsner et al., 2009; Ochsner, Bunge, Gross, &

Gabrieli, 2002; Quirk & Beer, 2006). Indeed, there are multiple circuit

nodes that have been implicated in emotional processing, including the

amygdala (Allsop et al., 2018; Burgos-Robles et al., 2017; Yizhar &

Klavir, 2018), ventral hippocampus (vHP) (Fanselow & Dong, 2010), and

ventromedial hypothalamus (VMH) (Kunwar et al., 2015); whereas the

amygdala and a subdivision of the VMH has direct reciprocal connections

with the mPFC (Lo et al., 2019; Yizhar & Klavir, 2018).

In contrast to the mPFC, the amygdala—widely considered the hub

for emotional processing (Brown & Sharpey-Schafer III, 1888; Janak &

Tye, 2015; Kl€uver & Bucy, 1937; LeDoux, 1996; Maren & Quirk, 2004;

Tye, 2018; Weiskrantz, 1956)—provides bottom-up control in limbic

circuitry, thereby facilitating rapid (LeDoux, 1996; M�endez-B�ertolo
et al., 2016; Tamietto & de Gelder, 2010), and automatic processing of emo-

tions in response to salient stimuli, in addition to modulating attention and

motivated-behavior (Davis &Whalen, 2001; LeDoux, 2000; Ochsner et al.,

2009; Phelps & LeDoux, 2005). The amygdala is also involved in regulating

fear responses (Fanselow & LeDoux, 1999; Maren, 2001). For instance, in

the historical case study that examined patient S.M., diagnosed with

Urbach-Wiethe disease, Adolph et al showed bilateral damage of the amyg-

dala severely impairs fear and anger recognition in facial expressions.

However, patient S.M. revealed no deficits in facial identity recognition,

indicating the amygdala’s role in facial affects and discerning emotional

associations (Adolphs, Tranel, Damasio, & Damasio, 1994).

Indeed, the basolateral amygdala complex (BLA), that includes the lateral,

basolateral, and basal amygdala nuclei, identified as an essential area in fear

conditioning consists of specific neuronal populations involved in the acquisi-

tion of associative memories as well as retrieval (Clem & Huganir, 2010;

Fanselow & Dong, 2010; Han et al., 2007, 2009; Namburi et al., 2015;

Reijmers, Perkins, Matsuo, & Mayford, 2007; Rumpel, LeDoux, Zador, &

Malinow, 2005). Whereas within the PFC, the acquisition, encoding and

retrieval systems appear to be in distributed neuronal populations (Otis et al.,

2017; Siciliano et al., 2019;VanderWeele et al., 2018).Although,within other
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emotional nodes such as the ventromedial hypothalamus, require specific neu-

ronal populations activation that differentiate aggression andmating behaviors

(Lin et al., 2011). These studies highlight key distinctions in neuronal circuits as

well as cell properties among limbic regions and the PFC in emotional

behavior.

2.2 The mPFC and emotional control
Another facet of mPFC valence processing is its involvement in emotional

control and the ability to suppress impulse behavior. Previous studies in

non-human primates showed damage to the OFC and lateral PFC elicits

deficits in affective processing as well as attentional selection (Brozoski,

Brown, Rosvold, & Goldman, 1979; Dias et al., 1996). Specifically, the

mPFC, along with other circuits, play a role in inhibiting rage and aggression

(Aleyasin, Flanigan, & Russo, 2018). In perhaps the earliest study examining

the effects of frontal lobe damage, patient Phineas Gage, suffered severe pre-

frontal cortex damage during a work accident. Following the incident, Gage

experienced significant cognitive and emotional changes that included

learning deficits as well as irritable, hostile, capricious, and irrational behav-

ior (Harlow, 1868, 1993). Thus, the PFC was targeted as a region for exper-

imentation to control anomalous behavior. Early procedures, i.e., the

psychosurgical interventions of the prefrontal leucotomy, now described

as the “lobotomy,” was developed to control human emotional and psy-

chotic behavior in mental health patients (Moniz, 1937). The technique

was designed to reduce aggressive tendencies by removing white matter that

undercut afferent and efferent connections to the PFC. Although highly

controversial and inconsistent, the PFC was highlighted as a region impli-

cated in emotional inhibition (Abimbola & Awolowo, 2006; Tierney &

Egas, 2000).

Historical evidence derived from human lesion studies corroborate the

effects of aberrant emotional behavior sustained by prefrontal cortex damage

(Papez, 1937). For example, human studies showed that patients exhibiting

ventrolateral andOFC damage display increased risk-taking andmaladaptive

behaviors related to reward-based aspects in decision-making processes

(Floden, Alexander, Kubu, Katz, & Stuss, 2008). Specifically, lesions within

the OFC (which often includes the ventromedial PFC; vmPFC), a region

involved in assessing reward-outcome and value (Wallis & Orbitofrontal,

2007), lead to increased risk-behavior regardless of the outcome or conse-

quence (Bechara, Damasio, Damasio, & Anderson, 1994; Clark et al., 2008).
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It was also shown that vmPFC lesions lead to emotional deficits that included

irritability, anxiety, as well as social impairments (Anderson, Barrash,

Bechara, & Tranel, 2006).

Bilateral lesions to the OFC lead to impairments in identifying voice and

facial expressions, along with deficits in subjective emotional states and

awareness (Hornak et al., 2003; Tsuchida & Fellows, 2012). Unilateral

lesions to the anterior cingulate cortex showed similar deficits in voice

and facial expressions identification and changes in subjective emotional

states (Hornak et al., 2003). A subtle distinction in these studies compared

to the bilateral amygdala lesions, as observed in patient S.M., is the specific

absence of fear and anger in facial recognition (Adolphs et al., 1994;

Forbes & Grafman, 2010; Fusi, Miller, & Rigotti, 2016; Rigotti et al.,

2013) .These human lesion studies highlight the effects of PFC damage as

it relates to emotional control, as well as the assessment of affective states

in reward processing and motivation.

2.3 The mPFC and context-specificity
The mPFC is principally involved in executive functions, that includes cog-

nitive processing and working memory, and is highly influenced depending

on contextual information (Bechara et al., 2000; Euston et al., 2012;

Sawaguchi & Goldman-Rakic, 1991). Context can be defined as a situation

or circumstance describing an event and can be delineated into multiple

aspects that include spatial, temporal, physiological, social, and/or cognitive

contexts (Maren, 2001). Context can provide information regarding loca-

tion and objects surrounding an environment, or actions and thoughts of

an event occurring during time. Context can also be described as the internal

or physiological state, for example hunger or stress; and depict the social

environment that influences behavioral outcomes. Furthermore, a cognitive

context is critical for encoding or processing information, and the retrieval

of memories which is necessary for adaptive behavior. As a higher-order

cortical region, the mPFC utilizes context during emotional valence

processing that affect goal-directed behaviors and decision-making processes

(Kennerley & Walton, 2011).

2.4 Mixed selectivity as a framework to flexibly encode
valence in mPFC circuits

Neurons that respond to stimuli in a specific condition or context or that

respond to a combination of task variables are referred to as ‘mixed selectiv-

ity’ cells (Fusi et al., 2016;Grunfeld &Likhtik, 2018; Parathasarathy et al., 2017;
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Ramirez-Cardenas & Viswanathan, 2016; Rigotti et al., 2013). We propose

that mixed selectivity is a model that can explain how mPFC circuits flexibly

encode valence across contexts and situations. In the wild, animals encounter a

range of contexts with varying degrees of risk and reward probabilities. Imagine

the toy example of two contexts, one with high probability of reward and

another with high probability of risk (Fig 2). mPFC neurons could respond

to specific valence cues in a context-specific manner, thus encoding a combi-

nation of valence and risk level. Mixed selectivity is computationally advanta-

geous because it increases the dimensionality of the population activity which

allows for more efficient encoding of complex tasks, thus highlighting the

ensemble of neurons, and not an individual cell, as the coding unit (Fusi

et al., 2016; Johnston et al., 2020; Rigotti et al., 2013).
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cue that predicts a reward or a negative CS- cue that predicts a punishment. Top
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In both primates and rodents, the prefrontal cortex shows mixed

selectivity during decision making and working memory assays (Machens,

Romo, & Brody, 2010; Mante, Sussillo, Shenoy, & Newsome, 2013;

Naya, Chen, Yang, & Suzuki, 2017; Powell & Redish, 2014). These types

of PFC mixed selective cells are easiest to identify when using intricately-

designed, model-driven behavioral experiments that are common in

systems-level investigations of non-human primates. On the other hand,

most circuit-specific studies use a data-driven approach, employing reduc-

tionist assays for their reproducibility and use manipulations complicating or

even obscuring the identification of mixed selective cells. In addition,

valence encoding literature has historically centered around single-cell

(Kyriazi, Headley, & Pare, 2018; Paton, Belova, Morrison, & Salzman,

2006; Shabel & Janak, 2009) or populations of cells that are anatomically

defined (Beyeler et al., 2016, 2018; Ciocchi et al., 2010; Janak & Tye,

2015; Namburi et al., 2015; Tye et al., 2011) encoding, thus overlooking

what the population is encoding as a whole.

Rigotti and colleagues demonstrated that the encoding advantage of

mixed selectivity is due to the nonlinear combination of firing rate to

two parameters. We propose circuit motifs to provide a neurobiological

mechanism for non-linear mixed selectivity and help consolidate this useful

neural code scheme with the hardwiring of circuits. First, convergence of

functionally diverse inputs of varying synaptic strength to the same mPFC

neurons could lead to nonlinear encoding of multiple parameters underlying

mixed selectivity (Fig. 3; motif 1). In addition, microcircuitry of mPFC cells

with diverse functions and interneurons could lead to mixed selectivity

(Fig. 3; motif 2). An example of this microcircuit motif was seen in the

amygdala, as a recent study showed that two amygdala subpopulations that

encode opposing valence are interconnected and modulated by hunger

(Calhoon et al., 2018). Internal states, such as hunger, social rank and mood

can modulate excitability or promote plasticity to non-linearly modulate fir-

ing rate, thus promoting non-linear mixed selectivity across states. These

two motifs explain potential circuitry for a neuron to show mixed selectiv-

ity, however they do not explain how there can be flexible routing of behav-

ioral output. We propose that a postsynaptic gating circuit motif can explain

how mixed selectivity in neurons with collateral projections can allow

flexible behavioral outputs. Postsynaptic gating via axo-axonal inhibition

or context or state-induced changes in intrinsic excitability could gate the

specific downstream pathway that is promoted (Fig. 3; motif 3). Finally,

neuromodulators can help bias a given behavioral output. We propose a
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Fig. 3 Circuit motifs as neurobiological mechanisms for mixed selectivity. All motifs represent a mixed selective cell that fires to an aversive
cue in a specific context A. Motif 1 shows that the same neuron receives converging input with different synaptic strengths from one input
that responds to the aversive cue and another that responds to context A, leading to non-linearmixed selectivity. Motif 2 shows an example of
mixed selectivity arising from local microcircuitry. Notice that the mixed selectivity is happening from context and cue information converg-
ing locally while inhibition facilitates context selectivity. Motifs 1 and 2 explain how non-linear mixed selectivity can arise from connectivity,
while motifs 3 and 4 focus on how circuitry can enable flexible behavioral selection downstream. Motif 3 focuses on gatingmechanisms in the
downstream regions recruited by mixed selective mPFC cells with collateral projections. Gating mechanisms in the downstream cells, such as
axo-axonal inhibition, intrinsic excitability, or converging inputs, can determine which pathway is promoted. Motif 4 -shows a neuron that
receives input from a neuromodulator that responds to aversion signals and input that is modulated by context A, which together promote
context-specific aversion. By recruiting inhibition of mPFC pathways that promote approach the mixed selective neuron can help route
behavioral selection.



motif in which neuromodulator concentration promotes mixed selectivity

in mPFC. A recent study showed that dopamine is released to the mPFC

and promotes aversion via mPFC output to the brainstem (Vander Weele

et al., 2018). mPFC neurons that receive dopaminergic input could promote

aversion in context specific manners by integrating contextual inputs and via

with disynaptic inhibition decrease approach (Fig. 3; motif 4). With these

potential circuit motifs in mind, we review the literature of the mPFC cir-

cuits that modulate social behaviors, drug-seeking behavior and anhedonia,

as they represent complex behaviors that are mediated by mPFC and could

be modulated or encoded via mixed selectivity.

3. mPFC circuits and dynamics flexibly modulate social
behaviors

Over the past decade there has been an explosion of research related to

how mPFC circuits and pathways modulate social behaviors. Although the

hypothalamus and other subcortical circuits are crucial for generating social

behaviors, the mPFC is well situated to integrate relevant information (social

rank, memories, context) to modulate social behaviors. Individual social

interactions are not all the same, they can be positive or negative, depending

on the context (previous social history, social rank relationships). mPFC

subpopulations that carry valence information can help guide the appropri-

ate behavioral response during a social interaction. For mPFC to flexibly

guide social behavior it must have a dynamic and plastic representation of

social cues. We review recent studies that support a dynamic representation

of social cues in the mPFC. In addition, to flexibly modulate social behaviors

the mPFC must have the ability to both promote and inhibit social behav-

iors. In support of this idea, the mPFC has multiple distinct circuits that either

promote or decrease sociability, and some that can be modulated by social

experience (Challis, Beck, & Berton, 2014; Franklin et al., 2017; Zhou

et al., 2017). Finally, with convergence of shared functions for valence-

related and social processing, there is an overlap in the mPFC circuits that reg-

ulate sociability, fear and anxiety-like behavior (Felix-Ortiz, Burgos-Robles,

Bhagat, Leppla, & Tye, 2016; Huang, Zucca, Levy, & Page, 2020), suggesting

that the mPFC integrates negative valence information to decrease social

exploration. We review the literature that supports a role of mPFC circuits

in flexibly guiding social behavior (Fig. 4) from the lens of a potential

interaction of valence encoding and social functions.
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3.1 mPFC social representation is dynamic and flexible
For the mPFC to flexibly guide social behavior a static representation of

social cues could decrease the ability to flexibly modulate social behaviors.

Across species, evidence points to the mPFC having a dynamic representa-

tion of social cues. In humans, the mPFC is activated in response to thinking

of yourself or others (Seger, Stone, &Keenan, 2004), and the degree of social

connections impacts the overlap in the mPFC representation (Courtney &

Meyer, 2020). This study suggests that the mPFC social representation is

dynamic and depends on social history. In mice, the mPFC represents the

conspecifics as well, and mPFC single cell activity can be best predicted

when taking into account both the behavior of the self and the other

(Kingsbury et al., 2019). In addition, another study showed that mPFC cells

can become responsive to social cues with repeated representation (Levy

et al., 2019), further demonstrating that mPFC social representation is

dynamic. An mPFC circuit that shows a flexible, and mixed selective, social

representation is the prelimbic cells that project to the NAc, as they show

spatial-social firing patterns (Murugan et al., 2017). Altogether, these studies

show that mPFC social representation is not static and could evolve with the

needs of the animal and changes in social history.

3.2 Distinct mPFC circuits bidirectionally control sociability
Our ability to socialize is important for survival and health (Cacioppo &

Cacioppo, 2018; Matthews & Tye, 2019), and socializing is a complex

process influenced by many of the traditional PFC functions such as

Fig. 4 mPFC circuits involved in social behaviors and reward processing. PFC neural cir-
cuits involved in social, addition, and reward behaviors. (A) PFC inputs from vHPC, MDT,
and BLA implicated in social memory (black), dominance (purple), sociability and
anxiety (dark blue). PFC outputs to the NAc, PAG, BLA, and DRN involved in sociability
(light blue), social defeat (red), sociability and anxiety (dark blue). (B) PFC inputs from
VTA, vHPC, and BLA implicated in reinforcing strength (red), reinstatement (light blue),
and negative affect (black). PFC outputs to the NAc core, NAc shell, PAG, and BLA involved
in reinstatement (light blue), compulsion (purple), extinction (dark blue), and negative
affect (black). (C) PFC inputs from VTA implicated in aversion (black). PFC outputs to
the NAc, LHb, DRN, and VTA involved in reward prediction (purple), reward consumption
(dark blue) anticipation (light blue), and anhedonia (red). Subdivisions of the PFC: ACC,
anterior cingulate cortex; PL, prelimbic; IL, infralimbic; OFC, orbitofrontal cortex. PFC
projections/connections to brain regions: vHPC, ventral hippocampus; MDT, mediodorsal
thalamus; BLA, basolateral amygdala; NAc, nucleus accumbens; NAc core; NAc shell; PAG,
Periaqueductal gray; DRN, dorsal raphe nucleus; VTA, ventral tegmental area; LHb, lateral
habenula.
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decision-making, cognitive flexibility, memory and compulsive control.

Recent optogenetic and chemogenetic studies have revealed that the

mPFC has multiple subcortical outputs that modulate sociability and many

of these circuits also play a role in valence encoding. Therefore, these mPFC

circuits provide a mechanism to flexibly adjust social behavior depending on

the potential rewards or dangers in the environment. A recent study showed

that the dissociable roles of the infralimbic/prelimbic projections to the BLA

in fear and anxiety (Adhikari et al., 2015) extend to sociability (Huang et al.,

2020). Activity of PL ! BLA cells decreased sociability while IL ! BLA

activity promoted sociability. Moreover, activation of PL ! BLA cells that

respond to negative stimuli (shock) was sufficient to see the decrease social

preference (Huang et al., 2020), suggesting that negative valence cells are the

same that modulate social preference. However, the PL! BLA circuit does

not necessarily have a simple and static role in modulating sociability.

Another study showed that optogenetic stimulation of PL ! BLA neurons

did not increase sociability when there was both a novel object and conspe-

cific present (Murugan et al., 2017), supporting a dynamic role for PL !
BLA neurons in which the exact context affects their function.

Interestingly, the same study showed that PL ! NAc stimulation resulted

in decreased sociability in this behavioral paradigm (Murugan et al.,

2017). Further evidence for a pro-social role of the IL! BLA circuit is that

activating it mitigates the social behavioral effects of social defeat in subor-

dinate, but not dominant, syrian hamsters (Dulka et al., 2020). It is of note

that the IL! BLA mitigation was dependent on the social rank, as this fur-

ther supports a non-static role of mPFC circuits in modulating social

behaviors.

Common circuitry controls anxiety and social behaviors. Activation of

the BLA input to mPFC both increased anxiety-like behavior and decreased

sociability in a resident intruder assay (Felix-Ortiz et al., 2016). Importantly,

the resident intruder assay is used as a measure of social anxiety in rodents

since it is sensitive to anxiolytics (Calhoon & Tye, 2015; File & Animal,

1985). Humans and mice carrying the Val66Met allele (Chen et al., 2006;

Li et al., 2019) show increased social anxiety. Moreover, in both humans

and mice, social anxiety was linked to altered OFC-amygdala activity

(Li et al., 2019). These studies support an interactive relationship between

anxiety and social behaviors, and demonstrate that social behaviors can be

inhibited due to anxiety signals via the PFC. Overall, mPFC circuits are well

situated to modulate sociability bidirectionally to flexibly adjust social

behaviors based on valence.
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3.3 mPFC circuits change with social defeat and dominance
mPFC social representations are dynamic and change with social experience.

What is the mechanism for this change in neural dynamics? One possibility is

that there is plasticity in specific mPFC circuits with social experience.

Consistent with this hypothesis, recent studies in mice show that mPFC cir-

cuits are sensitive to social defeat (Challis et al., 2014; Franklin et al., 2017)

and dominance (Zhou et al., 2017).

Two mPFC projections to the brainstem are bidirectionally modulated

by social defeat. After social defeat, optogenetic inhibition of the mPFC !
DRN pathway rescued social defeat-induced changes in sociability (Challis

et al., 2014). This study showed that specifically the ventral mPFC (IL)

innervates GABAergic DRN cells, therefore potentially resulting in lower

serotonin release which could mediate the social-affective changes induced

by social defeat. On the other hand, social defeat decreased mPFC! dPAG

connectivity and inhibition of the glutamatergic mPFC ! dPAG pathway

in non-defeated mice decreased social interaction (Franklin et al., 2017),

suggesting that mPFC ! dPAG is a pathway that can flexibly modulate

sociability depending on social experience. Interestingly, a recent study

showed that mPFC ! dPAG neurons encode negative valence stimuli

(shock) and promote aversion and anxiety-like behavior (Vander Weele

et al., 2018). One possibility that could consolidate these seemingly oppos-

ing roles of the same circuit is that non-overlapping mPFC ! dPAG neu-

rons could be mediating the two distinct roles. Alternatively, the decrease in

connectivity in the mPFC! dPAG pathway induced by social defeat could

be a plasticity response due to overactivity in this subpopulation as it signals

aversion.

An emerging field of the neural circuits underlying social dominance has

shined light into the role of mPFC and the medial dorsal thalamus (MDT).

Traditionally, the MDT ! mPFC pathway has been linked to cognitive

flexibility and spatial working memory (Bolkan et al., 2017; Hunt &

Aggleton, 1991; Parnaudeau et al., 2013). A recent study showed that social

dominance increases plasticity in theMDT-mPFC pathway and LTP induc-

tion in this synapse causes instant winning during social competition (Zhou

et al., 2017). An additional study showed that MDT was required for the

formation of the social hierarchy (Nelson et al., 2019) providing further sup-

port that plasticity in the thalamocortical pathway is important for social

dominance. Altogether, these studies demonstrate that social experience

induces synaptic plasticity in distinct mPFC circuits, thereby highlighting

the dynamic role of mPFC circuits in modulating social behaviors.
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3.4 Mixed selectivity in social behaviors
Social information is multisensorial and complex. Even in the simplest

rodent behavioral assay the presence of another mouse is an olfactory, visual,

and auditory cue. In addition to being multisensorial, social behavior is

influenced by social experience, context, and internal state. Therefore,

any social interaction has multiple parameters and the prefrontal cortex

could potentially encode more information by having mixed selectivity

to multiple cues and parameters of the social interaction. We see an example

of this mixed selectivity in how PL ! NAc neurons only encode spatial

location when another animal is in the environment, thus demonstrating

that mixed selectivity can be observed in a specific subpopulation of neurons

(Murugan et al., 2017). In addition, we have reviewed that there is an over-

lap of the mPFC circuits that mediate valence and social behaviors. An

example of this scenario is seen in the recent study by Huang et al., where

the same PL!BLA neurons that encode shock modulate sociability. This

overlap of mPFC circuits that mediate valence with mPFC circuits that

modulate social behavior provides the possibility that the same mPFC neu-

rons may be responding to a combination of threat level, reward assessment,

and social stimuli. Mixed selectivity could provide a computational way to

encode these parameters more efficiently and to allow the mPFC to flexibly

modulate social behaviors.

4. The mPFC is involved in addictive and compulsive
behavior

Drug addiction is a chronic, relapsing disorder characterized by the

compulsion to seek and take drugs despite associated negative consequences.

Addictive drugs are intrinsically rewarding and reinforcing and thus repre-

sent positive valence that confers incentive salience (Berridge & Robinson,

2016). Following excessive drug use, drug-associated positive valence has

been observed to be both heightened and blunted (Ahmed & Koob,

1998; Grigson & Twining, 2002; Volkow et al., 1997). Heightened

drug-associated positive valence can lead to anhedonia, or the loss of plea-

sure towards non-drug related rewarding stimuli, driving continual drug

seeking and abandonment of other rewarding behaviors (e.g., social inter-

action) (Grigson & Twining, 2002). In other cases, heightened drug-

associated positive valence can lead to sensitization or increased positive

valence towards other rewarding stimuli (e.g., sucrose) (Bechara, Dolan,
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& Hindes, 2002; Fiorino & Phillips, 1999; Goldstein et al., 2007; Nocjar &

Panksepp, 2002; Taylor & Horger, 1999; Wyvell & Berridge, 2001).

Overactivation of reward pathways in drug addiction leads to concurrent,

homeostatic activation of antireward or stress pathways mediating negative

reinforcement driving compulsive drug use to alleviate negative internal states

created by drug abstinence (Koob & Le Moal, 2008; Solomon, 1980),

suggesting that negative valence processing may be particularly important

in the development and maintenance of drug addiction. Therefore, both pos-

itive and negative valence-associated circuits are likely to be critical for distinct

processes in the transition to drug addiction. We review the literature on

mPFC circuits involved in drug addiction from the perspective of valence

encoding (Fig. 4) and finally integrate the computational framework of mixed

selectivity to explain how the mPFC flexibly regulates drug related decisions.

4.1 mPFC-NAc projectors mediate drug reinstatement
and extinction

Evidence from clinical and preclinical studies point to a prominent role of

the mPFC in addiction (Franklin et al., 2002; George & Koob, 2013;

Jasinska, Stein, Kaiser, Naumer, & Yalachkov, 2014; Van den Oever,

Spijker, Smit, & De Vries, 2010; Volkow & Fowler, 2000; Volkow,

Fowler, &Wang, 2003). Several projection-specific mPFC neurons regulate

drug seeking and extinction. The PL and IL subregions of the mPFC pre-

dominantly project to the NAc core and shell, respectively (Sesack, Deutch,

Roth, & Bunney, 1989), and largely play distinct functional roles in

addiction-related behaviors (Moorman, James, McGlinchey, & Aston-

Jones, 2015; Peters, Kalivas, & Quirk, 2009). The PL !NAc core is nec-

essary for cue-induced reinstatement whereas the IL!NAc shell is critical

for drug extinction. PL neurons projecting to the NAc core are activated by

cocaine cues during reinstatement, which positively correlate to cocaine

seeking action (McGlinchey, James, Mahler, Pantazis, & Aston-Jones,

2016), suggesting the recruitment of this pathway in drug seeking.

Indeed, ablation and silencing of PL ! NAc core decreases drug

primed- and cue-induced reinstatement of cocaine seeking (Kerstetter

et al., 2016; Stefanik et al., 2013; Stefanik, Kupchik, & Kalivas, 2016), con-

sistent with the roles of PL and NAc in drug reinstatement (Kalivas,

Volkow, & Seamans, 2005), and sensitivity to an alcohol and nicotine com-

plex interoceptive cues (Randall, McElligott, & Besheer, 2020). In contrast

to the PL!NAc core pathway, chemogenetic activation of IL!NAc shell

circuit decreases cue-induced reinstatement of cocaine seeking after
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extinction training (Augur, Wyckoff, Aston-Jones, Kalivas, & Peters, 2016),

suggesting a role of the IL!NAc shell in extinction memory. Altogether,

these studies suggest that the mPFC!NAc pathway may represent the

learned positive valence associated with drug cues.

Notably, with increasing time in abstinence following prolonged

drug self-administration, there is a parallel increase in drug cravings, a

phenomenon termed incubation (Gawin & Kleber, 1988; Grimm, Hope,

Wise, & Shaham, 2001). How drug abstinence alters the representation

of drug-associated cues/contexts was recently uncovered, providing insight

into cocaine incubation. Cameron, Murugan, Choi, Engel, & Witten

(2019) found that IL!NAc shell neurons encode spatial location in a drug

context, and the percent of spatial encoding neurons is decreased following

prolonged abstinence, suggesting a reduced representation of the drug con-

text. IL!NAc shell projectors exhibit an overall inhibition in activity prior

to drug seeking action, which is also reduced following a prolonged period

of abstinence. Optogenetic stimulation of IL terminals in the NAc shell

decreases drug seeking action following both acute and prolonged absti-

nence periods (Cameron, et al., 2019). These findings suggest that decreased

representation of drug-related context during abstinence in the IL!NAc

shell, an extinction-related circuit, may underlie incubation of cocaine crav-

ing. The involvement of mPFC projectors in cue-induced, context-induced,

and incubation requires the continual, dynamic representation of drug

associated cues. We speculate that mixed selectively properties of the mPFC

enable this representation of drug associated cues across several timescales.

4.2 Reprogramming corticostriatal circuits for therapeutic
plasticity

Drug exposure induced synaptic plasticity in corticostriatal circuits presents a

potential avenue for neural circuit reprogramming for therapeutic interven-

tion. In line with the dichotomous corticostriatal pathways, Ma et al. (2014)

found that prolonged cocaine abstinence activates drug-induced silent syn-

apses in PL and IL terminals in the NAc core and shell, respectively, through

distinct mechanisms. Using an optogenetic stimulation protocol to induce

long-term depression (LTD), essentially reversing the activation of

cocaine-induced silent synapses in the PL!NAc core and IL!NAc shell

led to decreases and increases in cocaine incubation, respectively, which

similarly regulates alcohol-seeking behavior as well (Ma et al., 2014; Ma

et al., 2018). In addition, using a similar optogenetic LTD stimulation

approach, Pascoli et al. (2014) found that reversing the observed
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cocaine-induced plasticity simultaneously at both the mPFC and vHPC ter-

minals in the NAc shell abolished cue-induced reinstatement of drug-

seeking, which persisted for a week (Pascoli et al., 2014). The enduring

inhibition of drug-seeking by LTD-induction highlights the potential for

reprogramming mPFC circuits for addiction treatment. Interestly, selective

manipulation of mPFC terminals in the NAc impairs discrimmination

between the drug-associated active lever and inconsequential inactive level

without altering drug seeking (Pascoli et al., 2014), suggesting that

cocaine-evoked plasticity in mPFC!NAc supports the learned association

between action and drug delivery. Beyond corticostriatal circuits, mPFC

neurons projecting to the laterodorsal tegmental nucleus (LDT) have been

implicated in reward-associated behaviors (Coimbra et al., 2019; Kamii

et al., 2015; Lammel et al., 2012; Xiao et al., 2016). mPFC inactivation pre-

vents cocaine-induced plasticity in the LDT (Kurosawa, Taoka, Shinohara,

Minami, & Kaneda, 2013), suggesting the importance of mPFC!LDT in

cocaine-related positive valence—begging a causal investigation for

mPFC!LDT involvement in the drug-associated behavior. Together,

drug-induced plasticity is an important mechanism by which mPFC circuits

regulate addiction-related behavior, and remodeling of drug-induced plas-

ticity in discrete mPFC circuits holds therapeutic promise for drug relapse.

4.3 Inputs to the mPFC provide valence and context to
modulate addiction-related behaviors

Subcortical inputs carrying diverse stimuli-related functional signals are inte-

grated within the mPFC influencing behavior. In particular, valence and

context related information is sent to the mPFC and modulates drug rein-

forcement and drug-seeking behavior.

The BLA sends dense projections to the mPFC that regulate anxiety-like

behavior, social interaction, fear learning, and has been proposed to rapidly

process and route negative valence information to the mPFC (Burgos-

Robles et al., 2017; Felix-Ortizet al., 2016; Klavir, Genud-Gabai, & Paz,

2013). In line with this, Dong, Taylor, Wolf, & Shaham (2017) found that

ablation of BLA neurons projecting to the mPFC (BLA!mPFC) increases

motivation for alcohol consumption (Dong, et al., 2017), suggesting that

BLA!mPFC may limit the reinforcing strength of alcohol consistent with

its role in negative valence. It is important to note that BLA!mPFC neu-

rons innervate neighboring BLA neurons as well as send collaterals to other

brain regions (Beyeler et al., 2016, 2018), thus it is yet to be determined if the

inputs to the mPFC directly mediate alcohol seeking behavior. Contrasting
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findings from Stefanik & Kalivas (2013) show that optogenetic inhibition of

BLA terminals in the PL subdivision of the mPFC inhibits cue-induced rein-

statement of cocaine seeking (Stefanik & Kalivas, 2013). Although these

studies used different behavioral paradigms, the findings suggest that

BLA!mPFC may differentially regulate drug seeking behavior depending

on the drug and context. The demonstrated role of the BLA!mPFC path-

way in regulating drug seeking and negative valence suggests a potential role

of this circuit in compulsive drug use, although this remains to be explored.

TheHPC has been implicated in drug reinstatement, and its connectivity

with the mPFC regulates relapse to extinguished fear, context-guided mem-

ory, and drug-associated cognitive deficits (Fuchs et al., 2005; Kutlu &

Gould, 2016; Marek et al., 2018; Place, Farovik, Brockmann, &

Eichenbaum, 2016; Rogers & See, 2007; Wang, Jin, & Maren, 2016).

Wang et al. found that vHPC-IL projections are activated by context-

induced reinstatement of heroin seeking, and chemogenetic inhibition of

vHPC-IL decreased heroin seeking (Wang et al., 2018). Moreover, pharma-

cological manipulation studies show that D1R and D2R signaling in the

vHPC!mPFC are important for the acquisition and retrieval of morphine

contextual memory depending on opiate exposure history (Wang et al.,

2019). However, causal implication of the vHPC!mPFC circuit in

drug-associated contextual memory remains to be tested.

The mPFC also receives afferent dopamine projections from the VTA.

Interestingly, Narita et al. (2010) found that electrical or μ-opioid receptor

agonist (DAMGO) stimulation of the VTA increases dopamine release in

the ACC. VTA infusion of DAMGO induces a conditioned place prefer-

ence that is significantly reduced by chemical lesion of dopamine terminals

in the ACC (Hitora-Imamura et al., 2015). These findings suggest that

VTA!ACC signals positive valence information related to the reinforcing

effects of opioids, which is in opposition to the identified role of

VTA!mPFC in aversion (Hitora-Imamura et al., 2015; Lammel et al.,

2012; Mantz, Thierry, & Glowinski, 1989; Vander Weele et al., 2018).

Alternatively, it is possible that VTA dopamine is necessary for the learned

association between drug and context, consistent with the proposed role of

mPFC dopamine transients in learning rather than valence (Popescu,

Zhou, & Poo, 2016).

While limited studies have directly examined the impact of inputs to the

mPFC in addiction-related behaviors, these studies point to a role of BLA,

HPC, and VTA inputs to the mPFC in both negative and positive valence

aspects of drug reinforcement and context influencing drug seeking
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behavior. Convergence of these diverse inputs could provide a circuit motif

that promotes mixed selectivity in mPFC during drug addiction (Fig. 3).

4.4 Corticoamygdalar circuits mediate abstinence-induced
negative affect

Negative affective states created by drug abstinence provide a strong moti-

vational drive to use drugs, contributing to negative reinforcement processes

underlying the transition and maintenance of drug dependence (Ahmed &

Koob, 1998; Koob & LeMoal, 2008). Multiple studies have now implicated

corticoamygdalar circuits in regulating drug abstinence-induced negative

affect, consistent with the role of corticoamygdalar circuits in negative

valence processing (Burgos-Robles et al., 2017; Felix-Ortiz et al., 2016).

McGinnis, Parrish, Chappell, Alexander, & McCool (2020) found that

withdrawal from chronic intermittent alcohol exposure strengthens

PL!BLA while weakening IL!BLA connectivity. Chemogenetic inhi-

bition of PL terminals in the BLA decreased withdrawal-induced

anxiety-like behavior (McGinnis, et al., 2020), highlighting the therapeutic

potential of synaptic remodeling in PL!BLA circuits. In line with this,

Zhao et al. (2017) found that morphine withdrawal-associated contextual

cues activate the mPFC!BLA projectors, suggesting that this circuit

may receive contextual information. Chronic morphine exposure increased

D1R expression in mPFC!BLA terminals and reversing this D1R over-

expression decreased conditioned morphine withdrawal place aversion

(Zhao et al., 2017). In addition, amygdala inputs to the mPFC also regulate

morphine withdrawal-associated negative affect, as optogenetic inhibition

of BLA terminals in the PL inhibits conditioned context-induced place aver-

sion by morphine withdrawal (Song et al., 2019). To date, corticoamygdalar

circuits remain the only mPFC circuit directly implicated in regulating

drug-associated negative affect. These findings highlight the importance

of corticoamygdalar circuitry for representation of negative valence during

drug withdrawal states contributing to negative reinforcement driving con-

tinual, excessive drug use.

4.5 Cortical regulation of compulsive drug use via striatal
and brainstem projections

A defining feature of drug addiction is the compulsion to seek and take drugs

despite associated negative consequences. Punishment-resistant drug use is

assessed by the introduction of footshock or adulteration of the drug
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(e.g., alcohol) with the bitter-tastant quinine during drug seeking or taking.

In the face of competing rewarding and aversive stimuli, the mPFC is rec-

ruited (Burgos-Robles et al., 2017). Indeed, IL neurons, and to a lesser

degree PL neurons, encode alcohol seeking action, which is significantly

diminished during sessions with punishment (Halladay et al., 2020). In addi-

tion, mPFC neurons encode aborts (i.e., when lever approaches are quickly

aborted) during punished alcohol seeking and in subsequent unpunished

alcohol seeking (Halladay et al., 2020). Of note, encoding of alcohol seeking

action and aborts are represented by distinct IL ensembles (Halladay et al.,

2020), potentially delineated by anatomical projection although remains

to be determined. Causal optogenetic inhibition of IL increases compulsive

alcohol seeking, and manipulation of PL bidirectionally regulates compul-

sive cocaine seeking (Chen et al., 2013). Punishment induced neuroplastic

adaptations in IL inputs to NAc shell D1R-expressing neurons, and

optogenetic silencing of IL!NAc shell, but not IL!BLA, decreases the

effects of punishment on alcohol seeking, suggesting that IL!NAc may

encode aborts (Halladay et al., 2020). Consistent with the role of the PL

in compulsive cocaine seeking, optogenetic inhibition of PL ! NAc core

decreases compulsive alcohol intake, but not unpunished alcohol intake,

which is dependent on hyperpolarization-activated NMDA receptors

(Seif et al., 2013). Interestingly, activation of shock-encoding PL! NAc

suppressed reward seeking, suggesting that distinct subpopulations within

PL ! NAc projectors may differentially regulate reward seeking (Kim

et al., 2017). Consistent with the role of the mPFC in processing both

reward and aversion, discrete mPFC circuits integrate punishment and

drug-associated positive valence to flexibly regulate compulsive drug use.

In addition, mPFC!PAG neurons selectively route aversive-stimuli

information (VanderWeele et al., 2018), and Siciliano et al. found that activ-

ity patterns in mPFC neurons projecting to the PAG during initial alcohol

exposure is predictive of later development of compulsive alcohol drinking

behavior (Siciliano et al., 2019). Using machine learning, the authors show

that mPFC!PAG neural activity during compulsive alcohol drinking was

predictive of whether mice would drink or not drink during the subsequent

opportunity to drink (Siciliano et al., 2019), consistent with the

mPFC!PAG neurons routing aversive-stimuli information. Moreover,

optogenetic manipulation of mPFC terminals in the PAG bidirectionally

compulsive alcohol drinking, respectively, but not unpunished alcohol

drinking (Siciliano et al., 2019). This study highlights the importance of
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negative valence processing by the mPFC in regulating compulsive drug

taking behavior. Moreover, it suggests that negative valence-related mPFC

circuits are important for negative reinforcement and compulsive aspects of

drug addiction.

These data highlight a specific role of mPFC!NAc and mPFC!PAG

circuits in compulsive drug seeking and taking, and the potential of these cir-

cuits to encode both drug-associated positive and punishment-associated neg-

ative valence. Mixed selective mPFC neurons in these pathways may be

critical in simultaneously encoding reward and punishment associated contin-

gencies for decision making in seeking drugs despite associated consequences.

4.6 Integration of circuits and mixed selectivity in drug
addiction

How do these discrete, seemingly static circuits regulate the decision to seek

and take drugs?Mixed selectivity properties of the mPFC allow for the com-

plex integration of a multitude of parameters enabling the consequent

orchestration of behavior. Several factors influence the decision to use drugs

including past rewarding or aversive experiences, drug cravings triggered by

drug-associated contexts/cues, internal emotional states, and predictions of

future consequences. Specific contexts (i.e., environmental, emotional,

internal state, recent prior experience) can elicit cravings and trigger relapse

in rodents, primates, and humans (Chaudhri, Sahuque, & Janak, 2008;

Fox, Bergquist, Hong, & Sinha, 2007; Litt & Cooney, 1999; Perry,

Zbukvic, Kim, & Lawrence, 2014; Reid, Flammino, Starosta, Palamar, &

Franck, 2006; Seo et al., 2013; Spealman et al., 2004; Zironi, Burattini,

Aicardi, & Janak, 2006), highlighting a conserved behavioral adaptation

contributing to addiction. The context in which drug-associated cues are

encountered also influence the degree to which drug cues elicit cravings

and relapse (Hyman, 2005). Context may modulate drug-associated valence

altering drug cue reactivity. For example, during hunger states food-

associated positive valence may exceed that of drugs consequently

transiently diminishing drug-associated positive valence. The brain contin-

uously assesses this rich multidimensional information to flexibly regulate

the decision to use drugs.

As mentioned, the mPFC has mixed selectivity properties enabling

simultaneous representation of diverse parameters within and across contexts

(Fig. 2). This provides a new conceptual framework in which to understand

addiction-related behavioral adaptations such as context-dependent drug

craving. Exposure to drug-associated cues under various contexts may
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trigger activity in mixed selective mPFC neurons encoding salient drug cues

and contexts, dynamically shifting population level encoding of the decision

to use drugs. For example, mixed selective neurons receiving contextual

information from HPC inputs and negative valence information from

VTA inputs (Hitora-Imamura et al., 2015; Lammel et al., 2012; Mantz

et al., 1989; VanderWeele et al., 2018), may flexibly shift the representation

of negative internal states or punishment under various contexts in response

to fluctuating dopamine levels to alter motivation for drugs. In line with

this idea, mPFC dopamine is necessary for drug relapse under certain condi-

tions (Capriles, Rodaros, Sorge, & Stewart, 2003; James, McGlinchey,

Vattikonda, Mahler, & Aston-Jones, 2018; McFarland, Davidge, Lapish, &

Kalivas, 2004; Wang et al., 2019). Simultaneous representation of drug

reward-associated context and drug abstinence-associated negative internal

states may bias population encoding to increase the decision to seek and take

drugs despite associated negative consequences underlying drug incentive

salience.

Diverse input (e.g., valence- and context-related) to mixed selective

mPFC neurons that project to several downstream brain regions may be a

mechanism by which hard-wired circuits flexibly direct behavior. Indeed,

overlapping mPFC circuits regulating several addiction-related behaviors

allow for multiple avenues by which mPFC mixed selective neurons may

direct the decision to use drugs. Conceptual integration of circuits and

the computational model of mixed selectively provides a new framework

for understanding drug addiction.

5. The mPFC as a major component in reward
processing

5.1 mPFC circuits involved in “wanting” and “liking”
In reward processing, pleasure is categorized into a anticipatory phase and

consummatory phase (Berridge, 2004). During the anticipatory phase,

referred to as “wanting,” the motivation to receive a reward elicits pleasure

(Berridge, 2004); thereby promoting appetitive behaviors that includes for-

aging for food, sex, and social interactions. Whereas in the consummatory

phase, also described as “liking,” pleasure is induced by hedonic impact of a

reward via initial sensory stimuli (Berridge, 2004). Here we review recent

literature describing the role of PFC circuits in motivation and anticipation

during reward seeking and consumption (Fig. 4).

195Valence processing in the PFC



SpecificmPFCprojections participate in anticipatory pleasure. For instance,

mPFC layer 5 projection neurons to the NAc (Gabbott et al., 2005)—a major

site for reward detection and reward learning (Castro & Berridge, 2014; Day &

Carelli, 2007; Day, Roitman, Wightman, & Carelli, 2007)—inhibit reward-

seeking behavior in response to aversive stimuli (Kim et al., 2017). For instance,

Kim et al identified a specific subset of mPFC!NAc projecting neurons that

are recruited in response to electrical shock and are involved in suppressing

reward-seeking behavior (Kim et al., 2017). Another downstream target

involved in anticipation and reward-seeking behavior is the lateral habenula

(LHb) (Benekareddy et al., 2018; Matsumoto & Hikosaka, 2007, 2009;

Warden et al., 2012). In rhesus monkeys, the LHb is activated upon presenta-

tion of neutral stimuli and punishment, but is inhibited upon reward presenta-

tion (Matsumoto & Hikosaka, 2007, 2009). Interestingly, photostimulation of

mPFC! LHb in rats significantly reduced mobility in the forced swim task

(FST), suggesting a lack of motivated-behavior or a passive coping strategy,

in contrast to mPFC! DRN activation that increased kicking and promoted

an active coping strategy(Warden et al., 2012). The FST is a commonly used

assay to examine anhedonia in rodents, as immobility is a measurement of

behavioral despair and mimics depressive-like phenotypes. Nevertheless, these

neural circuit studies highlight the diverse pathways that control reward

seeking-behavior and motivated behavior.

The OFC, a subregion of the PFC, acts as a primary mediator of con-

summatory pleasure. It integrates multiple sensory inputs, conveying plea-

sure sensation in response to gustatory, tactile, visual, olfactory and social

stimuli (Grabenhorst & Rolls, 2011), and encodes reward reinforcement

and reward prediction via midbrain dopaminergic neurons (Berridge &

Kringelbach, 2008; Sul, Kim, Huh, Lee, & Jung, 2010; Takahashi et al.,

2009). In a recent study, Jennings et al. identified distinct OFC neuronal

ensemble populations which responded to caloric consumption or social

interaction, indicative of consummatory pleasure ( Jennings et al., 2019).

In this study, single-cell activation of social cells suppressed feeding behav-

ior, indicating microcircuit level changes within the OFC that are recruited

in response to select reward stimuli. However, whether these OFC neuronal

ensembles are affected in specific contexts remains to be investigated.

5.2 mPFC circuits involved in reward-prediction and reward
learning

Reward is directly implicated in hedonic pleasure and plays a major role in

everyday decision-making processes that can influence survival, lifestyle, or
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wellbeing. The value of a reward is often described as the neuroeconomic

benefit received from a stimulus and can be transient or sustained over long

periods of time. Therefore, the reward is evaluated, and the value is deter-

mined depending on the salience and/or retrieved memories from prior

experiences.

Dopamine (DA) is historically best known for being the principal neu-

rological substrate involved in hedonic pleasure and it is responsible for

regulating reward value, reward outcome and motivation (Beyeler et al.,

2016; Dong et al., 2017; Klavir et al., 2013). This is predominantly mediated

via DA neurons in the VTA of the midbrain, however, the role of VTA DA

is heterogenous and depends on the specific downstream circuits (Lammel

et al., 2012; Lammel, Ion, Roeper, & Malenka, 2011; Lammel, Tye, &

Warden, 2013; Vander Weele, Siciliano, & Tye, 2018). Dopamine in the

PFC has been implicated in processing negatively valenced stimuli

(Vander Weele et al., 2018), and can produce avoidance (Gunaydin et al.,

2014), but is suggested to be a major component in reward prediction

(Schultz, Dayan, & Montague, 1997). This suggests that DA modulates

mPFC encoding of both positive and negative valence in behavior. Many

questions remain unanswered; are there mPFC mixed selectivity neurons

that encode for opposite valence? And does DA alter their activity?

The ACC, along with the OFC, encodes reward predictive cues

and subjective pleasure (Behrens, Hunt, Woolrich, & Rushworth, 2008;

Grabenhorst & Rolls, 2011; Kennerley, Dahmubed, Lara, & Wallis,

2009; Kennerley & Wallis, 2009; Kim, Hwang, & Lee, 2008; Rolls &

Grabenhorst, 2008), and is highly active when reward outcome influences

decision-making processes (Walton, Devlin, & Rushworth, 2004).

Specifically, optogenetic inhibition of ACC or prelimbic projections to

the dorsomedial striatum increases reward-seeking behavior during conflict

(Friedman et al., 2015). Other studies linked the mPFC! NAc pathway to

reward prediction and reward learning. For instance, studies in rodents

showed that mPFC! NAc projection neuron activity is amplified in

response to reward-predictive cues following reward learning and can

induce reward-seeking behavior (Otis et al., 2017). In contrast, activating

mPFC! PVT (paraventricular nucleus of the thalamus) neurons suppresses

conditioned reward seeking behavior (Otis et al., 2017), and is time-

dependent in fear learning, indicating the dynamic role within this pathway.

However, it remains to be seen whether the mPFC neuronal projecting

populations involved in reward prediction are altered in response to

context-specific changes.
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5.3 mPFC activity disrupted during anhedonia
Anomalous mPFC activity has been implicated in neuropsychiatric disorders

such as major depressive disorders (MDD) and schizophrenia (SCZ).

Anhedonia is described as the inability to experience pleasure or hedonic

feeling, affecting both consumption and anticipatory reward values, and is

observed in both MDD and SCZ (Lee, Jung, Park, & Kim, 2015;

Pizzagalli & Depression, 2014). The etiology of anhedonia is linked to

disruptions within the brain reward pathways due to dysregulation of

dopamine transmission (Chaudhury et al., 2013; Harvey, Pruessner,

Czechowska, & Lepage, 2007; Keedwell, Andrew, Williams, Brammer, &

Phillips, 2005; Tye et al., 2013) and anomalous mPFC neural activity

(Ferenczi et al., 2016; Kim et al., 2017; Warden et al., 2012). For instance,

optogenetic studies in rodents revealed that increasing mPFC activity in

glutamatergic projection neurons causes a significant decrease in sucrose con-

sumption and social interaction, indicative of a depressive-like phenotype

(Ferenczi et al., 2016). Accordingly, in human imaging studies, depressed

patients revealed elevated activity in the subgenual ACC of the PFC, which

was alleviated following deep brain stimulation (Mayberg et al., 2005).

Similarly, deep brain stimulation of the ACC in depressed patients improved

depressive-like symptoms in the refractory treatment period ( Johansen-Berg

et al., 2008; Schlaepfer et al., 2008). Contrastingly, other imaging studies in

depressedpatients revealed a reduction inPFCactivity (Galynker et al., 1998),

whichmay be attributable to a reduction in glutamatergic transmission due to

a decrease in the number of synapses (Duman, Sanacora, & Krystal, 2019;

Kang et al., 2012). These studies highlight a discrepancy in the literature

describing PFC neural activity regarding anhedonia. What could underlie

these discrepancies? It is possible that projection-specific neuronal popu-

lations are differentially altered during anhedonia, thus resulting in opposing

distinct changes in mPFC neural activity.

5.4 mPFC projecting neurons involved in anhedonia
mPFC projection target regions were identified to be involved in anhedo-

nia. For instance, acute optogenetic stimulation of mPFC-projecting

neurons in the dorsal raphe nucleus (DRN) in rats increased mobility in

the forced swim task, promoting motivation and active coping strategy

(Warden et al., 2012). This study highlighted the importance of circuit-

specific studies, as acute optogenetic stimulation of the mPFC caused no sig-

nificant changes in mobility. The mPFC! DRN pathway is also involved
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in social interaction, as photoinhibition of this circuit prevents social with-

drawal following a social defeat paradigm (Challis, et al., 2014). The DRN, a

major target in depression (Maier, 2015; Sf & Lr, 2005), consists of both

serotonergic and GABAergic neurons that primarily receive inputs from

PL projections onto GABAergic interneurons (Peyron, Petit, Rampon,

Jouvet, & Luppi, 1997; Vertes, 2004), which indirectly inhibits serotonergic

neurons ( Jankowski & Sesack, 2004). Interestingly, it was recently shown

that both serotonergic and GABAergic neurons in the DRN exhibit

context-specific changes in negative environments (Seo et al., 2019). It is

likely mPFC-DRN projections change depending on mood or during dis-

ease states; however, these hypotheses have yet to be investigated.

The VTA is another major region implicated in anhedonia, and can be

regulated via top-down connections from cortical regions that modulate DA

activity (Chaudhury et al., 2013; Ferenczi et al., 2016; Tye et al., 2013).

Accordingly, the VTA receives sparse projections from the mPFC that

innervate both GABA and DA neurons and have no preferential input

(Beier et al., 2015; Carr & Sesack, 2000a). Interestingly, activating the

IL-PFC reduced VTA DA excitability in rats, specifically in medial VTA

neurons that were most sensitive to chronic mild stress (Moreines,

Owrutsky, & Grace, 2017). It is likely mPFC projections strongly influence

VTA DA activity attributable to anhedonia. However, whether there are

differential effects of mPFC projections onto VTA DA and GABAergic

neurons remains to be understood.

5.5 Mixed selectivity neurons during anhedonia
The PFC, as a higher-order processing center, is highly adaptable and

dynamic. We propose that PFC function is compromised during anhedonia

which may limit flexibility. For instance, human fMRI studies of MDD

patients showed a marked decrease in PFC activity that is likely linked to glut-

amatergic dysconnectivity (Abdallah et al., 2017; Murrough, Abdallah, &

Mathew, 2017). This corroborated previous findings that revealed PFC hypo-

frontality within MDD patients contribute to the negative symptoms of

depression (Galynker et al., 1998). We suggest that during anhedonia, mixed

selectivity neurons have a decreased capacity to encode reward due to changes

in internal homeostasis. Accordingly, we expect an overall reduction in the

activity of PFC mixed selectivity projections neurons, consistent with the

observed decrease in PFC neural activity in MDD patients that lead to

impairments in anticipation and reward consumption.
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Additionally, mixed selectivity neurons may leverage axonal col-

lateralization and bias preferential outputs onto specific neuronal populations.

For instance, mPFC neurons innervate both GABA and DA neurons in the

VTA, and receive reciprocal connections from both cell types (Carr & Sesack,

2000a, 2000b). The mPFC mixed selectivity neurons could provide prefer-

ential inputs that influence the postsynaptic response on specific cell types

of the VTA that lead to differential behavioral outcomes. Indeed, we suggest

postsynaptic gating mechanisms via axo-axonal inhibition, intrinsic excitabil-

ity, and convergent inputs modulate the mixed selectivity outputs (Fig. 3).

Accordingly, we propose that within an anhedonic state, changes in postsyn-

aptic gating mechanisms decrease the ability to promote reward in a cell-type

specific and brain region-specific manner. For example, changes in post-

synaptic gating could shift mixed selectivity mPFC-VTA neurons to pref-

erentially modulate VTAGABAergic neurons leading to an increase in the

postsynaptic response. The increase in VTA GABAergic neuron activity

would cause an inhibition in VTA DA release leading to depressive-like

phenotypes. Altogether, this theoretical model would imply mPFC mixed

selectivity neuronal output activity is tuned during anhedonia that would

lead to deficits in anticipatory and consummatory pleasure.

6. Summary

In summary, we provide this review of the current state of

PFC research to support the widely-appreciated role of the PFC in higher-

order cognitive functions by highlighting the role of PFC ensembles and

circuitry in mediating emotional processing and the cognitive appraisal of

subcortically-mediated emotional processes in the context of mood disor-

ders, addiction, and social behaviors. In addition to diversification of scope

in function, we confront the growing chasm between the systems-level

focus on the ensemble dynamics with flexible functions of individual

“mixed selectivity” neurons (which point to the ensemble as the functional

unit), and the circuit-level focus on the on the circuit components of

input-output architectures and wiring diagrams (that point to the “hard-

wired” circuit component as the functional unit). Moving forward, we antic-

ipate the development of novel computational models for PFC function

that may unite these perspectives (Tsuda, Tye, Siegelmann, & Sejnowski,

2020). At this point in the field with these rapidly diverging subfields,

we are in need of a cohesive, integrative model that reconciles these

contrasting viewpoints and ushers us back into a converging trajectory.
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While perspectives will continue to diversify, cross-pollination across

subfields of research will only enhance our understanding of the most

uniquely-evolved structure in the human brain, and therefore ourselves.
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