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Abstract1

Mood, arousal, and other internal states can drastically alter behavior, even in identical external2

circumstances — a cold glass of water when you are thirsty is much more desirable than when3

you are sated. Neuromodulators are critical controllers of such neural states, with dysfunctions4

linked to various neuropsychiatric disorders. Although biological aspects of neuromodulation have5

been well studied, the computational principles underlying how large-scale neuromodulation of dis-6

tributed neural populations shifts brain states remain unclear. We use recurrent neural networks7

to model how synaptic weight modulation — an important function of neuromodulators — can8

achieve nuanced alterations in neural computation, even in a highly simplified form. We find that9

under structural constraints like those in brains, this provides a fundamental mechanism that can10

increase the computational capability and flexibility of a neural network by enabling overlapping11

storage of synaptic memories able to generate diverse, even diametrically opposed, behaviors. Our12

findings help explain how neuromodulators “unlock” specific behaviors by creating task-specific hy-13

pertubes in the space of neural activities and motivate more flexible, compact and capable machine14

learning architectures.15

16
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Introduction17

Neuromodulators are a central mechanism in the biological control of neural states that mani-18

fest as mood, arousal, and other variable behavioral modes [1, 2, 3, 4, 5, 6, 7]. Unlike standard,19

noise-sensitive models of context-dependent behaviors where exogenous cues are required to drive20

neurons [8] (Extended Data Fig. 1), neuromodulation can modify nearly every aspect of how neu-21

rons transduce information, including intrinsic ion channels and synaptic strengths using a scalar22

signal. This enables stable alterations of network computations over longer timescales that are23

robust to fluctuations in external inputs [9] (Extended Data Fig. 1), supporting neural states like24

sleep [3]. Pioneering studies on the lobster pyloric network [10, 11, 12] and other systems [13, 14]25

have revealed how neuron-specific neuromodulation can precisely tailor central pattern generator26

rhythms. Yet it remains unknown how large-scale neuromodulation of vast distributed neural pop-27

ulations can control global network dynamics and dictate behavior as it does in large brains.28

29

Fully understanding neuromodulation in brains is important for several reasons. First, most psychi-30

atric disorders either stem from or are directly related to neuromodulator dysregulation, as nearly31

all psychiatric drugs target neuromodulatory activity. Second, many of the psychiatric drugs cur-32

rently in use only partially or imprecisely target neuromodulatory processes. Third, effects of many33

psychiatric treatments are highly variable, with some patients responding strongly and others failing34

to respond to multiple drugs. Fourth, neuromodulation acts via multiple mechanisms (as discussed35

below), allowing powerful circuit control but also making it difficult to fully understand how. Fifth,36

given the central role of neuromodulators in control of brains, a better understanding promises to37

make deep learning models based on brain architectures more flexible, more compact, and more38

efficient.39

40

Neuromodulators affect several processes in brains including synaptic strengths, neural excitability,41

plasticity, and, indirectly, downstream circuit activity [15, 16, 10, 17]. Prior research has focused on42

different aspects of neuromodulation, including Yu and Dayan [18] who modeled the role of acetyl-43

choline and norepinephrine in Bayesian probability estimations of uncertainties; Stroud et al. and44

Vecoven et al. [19, 20] who considered modulation of the neural activation function; Beaulieu et al.45
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[21] who formulated neuromodulation as a separate network that masks effector networks; Miconi46

et al. [22] who used modulation of synaptic plasticity to train networks; and Hasselmo et al. [23]47

who developed a model incorporating experimental work on multi-factor neuromodulator-specific48

circuit dynamics, particularly in hippocampal memory processes. Our model of synaptic weight49

modulation shares some similarities to previous models, particularly to the neural excitability mod-50

els [19, 20]. Both lead to increased flexibility and versatility, yet they operate through independent51

mechanisms both biologically [16] and computationally (see Extended Data Appendix A).52

53

We focus here on a critical aspect of neuromodulation in brains — synaptic weight modulation54

[10, 16, 13, 12, 24] — of which no general, biologically-plausible model exists. We consider a simpli-55

fied approximation in which neuromodulators act as nearly uniform synaptic weight amplifiers or56

dampeners within a local region of a neural network. We show how this form of neuromodulation57

establishes overlapping synaptic memories corresponding to unique dynamic activity landscapes58

within a structurally-conserved neural network to generate unique behaviors. We demonstrate59

how neuromodulated circuits give rise to idiosyncratic, non-linear dose-response properties that60

can differ depending on the mode of neuromodulation. Using a well-established neuromodulation-61

mediated behavioral paradigm in Drosophila, we show how this form of neuromodulation naturally62

handles intermediate neural states, and as such, generalizes models of discrete internal state switch-63

ing [25, 26] to continuous state transitions. Although many mechanisms may influence behavioral64

shifts, we show that a simple multiplicative factor applied to weights already acts as a powerful65

network control device, allowing neuromodulators to vastly increase the capability and complexity66

of computation in brains and making artificial neural networks more flexible, compact and capable.67

68

Results69

Neuromodulation creates multiple weight regimes within shared synaptic connections.70

The effects of neuromodulators on synaptic weights present a mode of circuit control [16] that is71

poorly understood in brains — both how it is implemented at scale and the computational mecha-72

nisms by which it shifts coordinated activity to generate different behaviors. Several recent studies73
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on cell type diversity have made clear that brains contain a complex array of neuromodulators74

that act with carefully coordinated spatiotemporal precision [27, 28, 29, 30, 31]. As a first step,75

we sought to assess whether a simplified form of neuromodulation — modelled as a uniform mul-76

tiplicative factor acting on synaptic weights in a recurrent neural network (RNN) — could help us77

understand how neuromodulators control neural state. Although other modes of neural network78

control such as exogenous contextual cuing have been shown to successfully shift network behav-79

ior [8], uniform weight modulation represents a completely different biological and computational80

mechanism, which, given the complex, non-linear, and often unpredictable nature of RNNs, requires81

explicit assessment.82

83
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Fig. 1 | Neuromodulation weight scaling separates overlapping synaptic memory regimes. a,
Modified Go-NoGo task. Given a stimulus (either + or ∅), in absence of neuromodulatory effect the re-
current neural network (RNN) should produce outputs from the Behavior 1 repertoire and in presence of
neuromodulator, from Behavior 2. b, Approximation of neuromodulatory effect implemented in the model:
all synaptic weights in the RNN are multiplied by a constant factor, here 0.5. c, Mean output to + and
∅ stimuli of 10 independently trained RNNs on the modified Go-NoGo with global neuromodulation factor
0.5. Shading represents standard deviation. d, Individual neuromodulators elicit unpredictable transforms
of firing patterns in crustacean stomatogastric ganglion (STG) neurons. Reprinted from Neuron 76, Marder,
Neuromodulation of Neuronal Circuits: Back to the Future, 1-11, 2012, with permission from Elsevier. e,
Five example neurons’ activity patterns from neuromodulated model RNN show complex nonlinear trans-
formations analogous to crustacean STG activity changes under neuromodulation.

We used a modification of the classic Go, No Go experimental paradigm (“modified Go-NoGo;”84
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Fig. 1a; see Methods) to assess whether given identical input stimuli, uniformly shifting all the85

weights in a RNN — for example, scaling all weights by a factor of 1
2 (Fig. 1b) — could elicit an86

independent behavior from the same network. We found that neuromodulation in this form was87

able to generate distinct behaviors for the task (Fig. 1c), demonstrating that this simple mecha-88

nism operating in brains can effectively separate synaptic memory regimes within a fixed circuit89

and access them through uniform scaling of weights to “unlock” specific behaviors (Extended Data90

Fig. 3). We found this result held over a wide range of neuromodulatory factors (Extended Data91

Fig. 4). Furthermore, reminiscent of neuromodulator effects on individual neuron activity patterns92

observed in lobster stomatogastric ganglion (Fig. 1d) and other organisms [10, 12, 32, 13], we93

found that both global activity (Extended Data Fig. 2a) and individual neuron activities were94

unpredictable, displaying non-linear transforms (Fig. 1e and Extended Data Fig. 2b).95

96

Targeted neuromodulation can toggle across multiple global network states. In brains,97

neuromodulators are released in specific regions — some tightly localized, others broadcast widely98

— to influence local and global neural output. We found that RNNs with neuromodulated subpop-99

ulations of sizes across a broad range (100%–10% of the whole population) consistently supported100

the opposing behaviors of the task (Fig. 2a–c). Just as some neuromodulators affect neurons in101

a cell-type specific manner, for example selectively influencing activity of excitatory or inhibitory102

neurons with corresponding receptors [33], we found targeting of neuromodulator in this manner103

also was able to support the task (Fig. 2d,e).104

105

To assess the flexibility of this neuromodulatory mechanism, we asked whether multiple unique106

behaviors could be learned and unlocked from a single network through targeted neuromodulation.107

Using an extended version of the modified Go-NoGo task (see Methods), we found that neuromod-108

ulation of distinct subpopulations or with distinct neuromodulation levels could support multiple109

behaviors, up to the maximum 9-behavioral Go-NoGo task we tested (Fig. 2f,g and Extended Data110

Figs. 5, 6; see Methods).111

112

Distinct global network activity hypertubes with non-linear transition dynamics emerge113

from neuromodulation. To understand how this form of neuromodulation leads to network be-114
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Fig. 2 | Targeted neuromodulation flexibly supports multiple behaviors. a, A range of different
sized neural subpopulations embedded within a RNN were neuromodulated (factor (fnm) = 0.5). 100% was
positive control demonstrated in Fig. 1; 0% was negative control. b,c, RNNs with embedded neuromodulated
subpopulations across the size spectrum could support the opposing behaviors of the modified Go-NoGo. b,
Number of training trials to reach stop criteria (see Methods). c, Test performance (1 is 100% correct; see
Methods). d, Neuromodulation of exclusively excitatory or inhibitory neurons (blue annuli). e, Excitatory
or inhibitory neuromodulation supported learning of modified Go-NoGo. f, 9-behavior modified Go-NoGo
task with unique neuromodulated subpopulations (subpops) and example corresponding outputs. g, RNNs
successfully learned the task from f with 9 targeted subpops (each 10% of the RNN, non-overlapping;
fnm=2.5). Application of neuromodulator to any subpop unlocked a specific behavior set (beh.) from the
9-behavior repertoire (fraction of trials correct is ≈1 on diagonal; see Methods). Off-diagonal fraction correct
due to partial output overlap between behavioral sets.

havior shifts, we analyzed the coordinated activity of all neurons in the RNN in the absence and115

presence of neuromodulator. At the individual neuron level, neuromodulation shifted the net differ-116

ence of excitatory and inhibitory inputs, which in turn altered the recurrent propagation of activity117

over time and resultant internal network dynamics (Extended Data Figs. 7–9). At the whole pop-118

ulation level, neural activity trajectories for the same stimulus with and without neuromodulator119

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.05.31.446462doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.31.446462
http://creativecommons.org/licenses/by-nc-nd/4.0/


followed non-overlapping, stereotyped paths, or hypertubes [34, 35, 36], in activity space (Fig. 3a).120

Through amplification of synaptic weights, neuromodulation effectively resets all the pins in the121

pinball machine, altering activity flow patterns through the RNN (Extended Data Fig. 1f and 10a).122

123

The distinct hypertubes in activity space derive from a common underlying neural network. This124

suggests that there must be a transition between the hypertubes accessible through intermediate125

amounts of neuromodulation. To characterize this transition, we applied intermediate levels of126

neuromodulation to the RNN after training, which mapped a smooth transition from trajecto-127

ries of the non-neuromodulated hypertube to those of the fully neuromodulated hypertube (Fig.128

3b). Furthermore, intermediate neuromodulation generated intermediate outputs from the network129

(Fig. 3c). In this way, just as RNN neural trajectories have been shown to naturally address tem-130

porally varying sensory-motor patterns [34], neuromodulated neural trajectories provide a means131

to naturally respond to intermediate, even unexperienced neural states (e.g. hunger levels). To132

characterize the transition in output behavior, we measured the output of the RNN at the midpoint133

of each trial for each level of neuromodulation. We found that increasing neuromodulator levels led134

to non-linear (exponential or sigmoidal) progression from non-neuromodulated (Go: +1) to fully135

neuromodulated behavior (NoGo: 0) (Fig. 3d).136

137

We next asked whether neuromodulatory transition dynamics were tightly constrained, defining a138

conserved property of neuromodulation, or highly variable depending on individual network charac-139

teristics. To test this, we independently trained 29 RNNs. All RNNs exhibited non-linear transition140

dynamics best fit by an exponential or sigmoid function (Fig. 3e and Extended Data Fig. 10b),141

but networks’ sensitivities to neuromodulator and rates of transition varied drastically. To quantify142

this variability, we defined a “half maximal effective concentration” (EC50) as the amount of neu-143

romodulator required to generate a half maximal output (see Methods). The EC50 of individual144

networks trained with a full neuromodulator factor of 9 ranged from 2.1 to 6.5 (3.1x range; Fig.145

3f, left) and rate of transitions (steepness of the transition dynamics sigmoid) varied widely as146

well from 0.9 to 26.3 (Fig. 3f, right). This result reveals a previously unknown phenomenon that147

may contribute to the wide individual variability of neuropsychiatric drug sensitivities observed148

clinically [37]; a “circuit-based sensitivity.”149
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150

We next sought to characterize what properties of the networks contribute to the variability in151

sensitivity to neuromodulator. We found that the skewness of networks’ weight distributions ex-152

hibited a positive correlation with EC50s (R=0.51, p<0.01; Fig. 3g), suggesting networks with153

more positively skewed weights (longer tail of strong excitatory weights) were less sensitive to neu-154

romodulator. To further understand the source of network sensitivity variability, we characterized155

the shape of the networks’ activity transition curves across neuromodulation levels (Fig. 3h). At156

a given trial timepoint, purely linear interpolation yielded linear sensitivity relationships with in-157

variant EC50 (Extended Data Fig. 11). In contrast, progressive neuromodulation defined an arc158

(Fig. 3h,i), which, collectively across all timepoints formed a curved transition manifold connecting159

each neuromodulation-specific activity hypertube. The geometry of this transition arc (measured160

as the angle of departure; see Methods) was strongly correlated to network sensitivity (Fig. 3j).161

This suggests that while individual networks can achieve identical performance on the trained task162

(no and full neuromodulation), the geometry of their population activities at intermediate neuro-163

modulations is unique, leading to emergent sensitivity profiles.164

165

Excessive neuromodulation can also occur either pathologically or pharmacologically. To model166

this, we applied neuromodulation at levels higher than those used during training and found neu-167

ral dynamics could sometimes (but not always) diverge from trained activity hypertubes into an168

adjacent region of activity space, translating into inappropriate output behavior (Extended Data169

Fig. 10c–e).170

171

Neuromodulated RNN replicates dopamine-mediated starvation-dependent sugar sen-172

sitivity in Drosophila. Given our finding that neuromodulation provides a natural means of173

handling intermediate, unexperienced neural states, we next sought to evaluate our model’s ability174

to recapitulate the behavioral effects of neuromodulation observed in vivo. The neuromodulator175

dopamine controls the sugar sensitivity behavior of Drosophila [1], as measured by proboscis ex-176

tension reflex (PER) probability, which increased with both duration of starvation (fed, 1 day, 2177

day starved) and concentration of L-dopa administered in their diet (0, 3, 5 mg/ml) (Fig. 4a).178

179
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Fig. 4 | Neuromodulated RNNs reproduce Drosophila sugar sensitivity behaviors. a, Drosophila
sugar sensitivity behaviors from Inagaki et al. 2012 measured as PER behavior vs sugar concentra-
tion. Reprinted from Cell 148, Inagaki et al., Visualizing Neuromodulation In Vivo: TANGO-Mapping
of Dopamine Signaling Reveals Appetite Control of Sugar Sensing, 583-595, 2012, with permission from El-
sevier. b, Neuromodulated RNNs trained on extremes of Drosophila sugar sensitivity (no neuromodulation
factor (fnm=1) for fed and fnm=5 for 2 days starved) exhibit similar intermediate (fnm=3; untrained) and
extreme (no neuromodulation (fnm=1) and fnm=5; trained) behaviors (n=10; error bars are SEM; same
statistical test as in Inagaki et al. 2012 for boxplots, see Methods).

To assess if our neuromodulation model could reproduce these results, we trained RNNs with neu-180

romodulated subpopulations (20% subpopulation) to reproduce the fed and 2 day starved sugar181

sensitivity curves of flies (no neuromodulation (fnm=1) for fed; fnm=5 for 2 day starved). We then182

tested the RNNs’ behaviors at an intermediate, never-before experienced neuromodulator level183

(fnm=3). The RNNs produced a shifted sensitivity curve very similar to that exhibited by 1 day184

starved flies and the flies fed an intermediate L-dopa concentration of 3 mg/ml (Fig. 4b).185

186

The behavior of the RNNs reliably mimicked the intermediate behaviors of flies in vivo because187
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intermediate neuromodulation caused a continuous shift in the RNN’s activity hypertube between188

“fed” and “2 day starved/5 mg/ml L-dopa” hypertubes (Extended Data Fig. 12a–c). Furthermore,189

our model reveals that transition manifolds (defined by the hypertubes connecting intermediate190

neuromodulation levels) are unique to networks, predicting wide-ranging natural variability in fly191

starvation-based sugar sensitivity profiles (Extended Data Fig. 12d). Neuromodulation leads to192

natural handling of never-before experienced neural states by creating a network configuration such193

that the neuromodulatory transition manifold has a geometry that leads to intermediate outputs.194

195

Electrical modulation shifts neural dynamics through an independent circuit effect.196

Other endogenous and exogenous influences can alter neural circuit dynamics through mechanisms197

that may be shared or independent, and understanding relationships between such interventions198

is vital for safe and effective treatment. We used our model to compare whether exogenously199

delivered electrical modulation of a neuromodulated circuit — analogous to use of optogenetics200

experimentally [38] and deep-brain stimulation (DBS) and transcranial magnetic stimulation clin-201

ically [39, 40, 41] — alters network activity in an analogous manner to chemical neuromodulation202

or operates through an independent effect (Fig. 5a).203

204

We computationally applied electrical modulation (excitatory or inhibitory current; see Methods)205

to RNNs trained with neuromodulated subpopulations and found that while electrical current given206

to random subpopulations did not affect the RNNs’ performances, current delivered to the neu-207

romodulated subpopulation could significantly affect network output (Fig. 5b), shifting behaviors208

directionally toward the opposing neuromodulation condition behavioral set (Extended Data Fig.209

13a,b).210

211

In each RNN, increasing the level of targeted electrical input — for example inhibitory modulation212

in the absence of neuromodulator — led to a graded transition in behavior similar to the transition213

observed with graded administration of neuromodulator (Fig. 5c). To compare these conditions,214

we measured the amount of electrical input that led to output of 50% of the fully-neuromodulated215

condition (e-mod50) analogous to EC50 for neuromodulator levels. Interestingly, RNNs also exhib-216

ited idiosyncratic circuit-based sensitivity to electrical modulation, with e-mod50 under inhibitory217
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Fig. 5 | Targeted electrical modulation shifts network dynamics through independent circuit
effect. a, Schematic of DBS and analogous electrical modulation (e-mod) of a neuromodulated RNN. b,
Test performance was significantly impaired in absence of neuromodulation (white bars) when inhibitory
on-target electrical modulation (e-mod) was given (p=3.91e-11) and with neuromodulation (blue bars) when
excitatory and inhibitory on-target e-mod was given (p=2.20e-08 and p=2.18e-02, respectively). *:p<0.05,
**:p<0.01. c, RNN output in absence of neuromodulation to + stimulus with increasing inhibitory e-mod.
d, For 30 RNNs: Left: neuromodulation EC50. Right: electrical e-mod50. Down arrows in d, e indicate
RNNs that did not achieve e-mod50 at maximum stimulation. e, No significant correlation between networks’
EC50 and e-mod50. f, Neuromodulation and electrical modulation push activity trajectories along different
transition manifolds enabling independent transition dynamics.

modulation ranging from -2.6 input current to not achieving e-mod50 by the maximum modulation218

we administered (-9 input current; >3.5x range) (Fig. 5d, right).219

220

We then assessed whether networks’ electrical and chemical sensitivities were related, and found221

no significant correlation (Fig. 5e). Since some RNNs’ outputs did not reach e-mod50, saturating222

before the maximum electrical input given, — further evidence of a different mechanism at play —223

we also measured each RNN’s output at maximum electrical input (input=-9) and similarly found224

no significant correlation to EC50 (Extended Data Fig. 13c). The lack of correlation suggests that225

networks insensitive to chemical modulation may still be highly sensitive to electrical modulation226
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and vice versa. Consistent with this, we found that electrical modulation progressively shifted227

population dynamics along a manifold transition distinct to neuromodulation, enabling different228

rates of transition (Fig. 5f). This may help explain why some patients who fail pharmacologic229

treatments sometimes respond dramatically to DBS. By utilizing an independent mechanism to230

chemical modulation, DBS exploits a parallel circuit-sensitivity to achieve therapeutic efficacy.231

232

Discussion233

Neuromodulation in brains drives unique neural function in health and disease. Using an RNN234

model, we showed how neuromodulators, through simple scaling of synaptic weights, can generate235

unique behavioral modes from a single RNN. The importance of our findings is not that our model236

was able to solve tasks like Go, No Go, which other computational models with mechanisms like237

contextual cuing can also solve. Rather, we showed how neuromodulation, a completely indepen-238

dent and previously uncharacterized control mechanism that is highly relevant biologically and239

clinically, is able to rapidly reconfigure a network with only a single scalar input.240

241

Our model provides insights into neuromodulation that are related to other recently elucidated242

principles of neural computation. We showed that neuromodulation leads to separation of dis-243

tinct activity hypertubes, similar to those observed by Goudar and Buonomano [34] and Nieh et244

al. [36], with neuromodulation effectively disentangling neural trajectories by separating them in245

phase space analogous to the work of Russo et al. [42] in motor cortex. Just as neural trajectories246

provide transformations in phase space that naturally handle temporal variation of sensory-motor247

patterns [34], neuromodulation leads to transformations in phase space that elucidate a biological248

mechanism for handling intermediate and continuously transitioning neural states, even if never249

experienced before. We demonstrated the biological use of this property through replication of Ina-250

gaki et al.’s findings in Drosophila [1]. In this way, the level of neuromodulation acted as a controller251

on the amount of disentangling of neural trajectories, using internal neural state (amount of weight252

modulation) to control output behavior. Such a system is robust to external noise (Extended Data253

Fig. 1), since far apart neural states generate trajectories that are widely separated in phase space.254
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255

Through this analysis we discovered a feature of networks previously unreported to our knowl-256

edge: “circuit-based sensitivity,” which helps explain the clinical observation of high variability257

in drug and other therapeutic response [37], alongside more standard explanations like enzyme258

variant-dependent drug metabolism and clearance rates. This emergent sensitivity property of259

neuromodulated networks is related to the well-known “many solutions” phenomenon of neural260

networks where different weight configurations can produce identical output [43, 44]. Unlike stud-261

ies focusing on variability in networks producing identical output, our model allowed study for the262

first time of the transition dynamics under neuromodulation, revealing unique geometric configu-263

rations of phase space underlying emergent network sensitivity profiles.264

265

Future studies aimed at identifying circuit parameters that control this transition dynamic geome-266

try will be critical for understanding and use in therapeutic optimization. The idiosyncratic nature267

of circuit-based sensitivity aligns with current efforts in precision medicine calling for the need to268

consider each patient as an idiosyncratic individual — here we provide computational evidence for269

this claim and its particular importance in neuropsychiatric treatment [45]. Fully understanding the270

relationship between chemical and electrical modulation and sensitivity is also crucial. Although271

our simplified model suggests how the modes of modulation influence dynamics (see Extended Data272

Appendix B), further analytical and experimental investigation into their relationship as network273

dynamics evolve over time could provide deeper insights.274

275

Our formulation of the neuromodulatory effect on synaptic weights is a simplification of the true276

biological mechanism. Elaborating our model to support differential weight modulation (e.g. via277

multiple neuromodulators and neuromodulator receptor subtypes on specific cell-types) [46, 4],278

neuromodulator multiplexing [33, 30], and metamodulation [16, 47, 6] will likely lead to even more279

sophisticated network behavior. Our model also uses arbitrary neuromodulation levels, whereas280

brains likely use specific levels for optimal functionality. Future investigation into which levels are281

optimal and methods of learning these will be important.282

283

Finally, neuromodulation provides interesting directions for machine learning (ML). By separating284
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synaptic memory regimes in a single network, we demonstrate how a network can have much greater285

flexibility and increased capacity, supporting a library of unique behaviors for overlapping external286

contingencies. Furthermore, each behavior can be rapidly accessed through targeted application of287

the relevant neuromodulatory factor. High capacity, compact networks with high-speed access to288

different output modes presents a promising component for ML development and storage-limited289

applications like edge computing. Additionally, through the separation of memory regimes that290

effectively splits a single RNN into multiple processors, this mechanism may provide a means of291

realizing the super-Turing capability of specific RNN configurations as defined by Cabessa and292

Siegelmann [48]. Future theoretical assessment of neuromodulated RNNs’ capacity will establish if293

this simple mechanism is sufficient to exceed the Turing limit.294
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Methods

Modified Go-NoGo tasks. The classic Go-NoGo task has two possible stimuli (positive pulse

referred to as positive stimulus or +; no pulse, also referred to as null stimulus or ∅). The agent is

trained to give a positive output (+1, “Go”) for the positive stimulus and zero output (0, “NoGo”)

for the null stimulus. In the modified Go-NoGo task we added a second possible behavioral set:

NoGo for the positive stimulus and negative output (-1, “AntiGo”) for the null stimulus. The

network was trained on the classic Go-NoGo behavior in the absence of neuromodulator and on

the new NoGo-AntiGo behavior in the presence of neuromodulator. The 3 behavior and 9 behavior

variants of the modified Go-NoGo task followed a similar paradigm with additional added behav-

iors. In the 3 behavior version, a third behavior of positive stimulus → AntiGo, null stimulus →

Go was added. In the 9 behavior version all possible stimulus → output response pairs were added.

As such, Behavior 1 was + → AntiGo, ∅ → AntiGo; Behavior 2 was + → NoGo, ∅ → AntiGo;

Behavior 3 was + → Go, ∅ → AntiGo; . . . ; Behavior 9 was + → Go, ∅ Go. In our simulations

each trial lasted 200 timesteps of 5ms each for a total represented duration of 1 second.

Neuromodulatory neural network model. For our simulations we used a continuous rate

recurrent neural network (RNN) model with biologically plausible parameters similar to RNNs in

prior works [49, 50]. Consistent with biological neural networks, we implemented Dale’s Law using
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the method in Song et al. [51] such that each neuron was either excitatory or inhibitory. For all our

simulations we used a RNN with N = 200 neuron units, 80% excitatory and 20% inhibitory. In the

RNN each neuron can be connected to any other neuron with probability pcon (pcon was initialized

at 0.8 in our simulations), and each neuron receives weighted input from connected neurons to

produce a firing rate governed by the neural dynamical equation

τ
dx

dt
= −x+Wr +Winu+N(0, 0.1) (1)

where τ ∈ R1×N is the synaptic decay time constant for the N neurons in the network, x ∈ R1×N

is the synaptic current variable for the N neurons, W ∈ RN×N is the matrix of synaptic weights

between all N neurons, r ∈ R1×N is the output firing rates of the N neurons in the network,

Win ∈ R1×N are weights associated with external input u, and N(0, 0.1) is added noise drawn from

a normal distribution with mean 0 and variance 0.1. The output firing rate for the neurons is given

by an elementwise nonlinear transfer function transformation of the synaptic current variable. In

our network we used the standard logistic sigmoid function as implemented by prior models [52, 49]:

r =
1

1 + e−x
(2)

The synaptic connectivity matrix W was randomly initialized from a normal distribution with

zero mean and standard deviation g/
√
N · pcon, where g is the gain. We set g = 1.5 as previous

studies have shown that networks operating in a high gain regime (g ≥ 1.5) support rich dynamics

analogous to those of biological networks [49, 52, 53]. The synaptic decay time constants were

randomly initialized to a value in the biologically plausible range of 20–100 ms. As in Kim et

al. 2019, we used the first-order Euler approximation method to discretize equation (1) for the

simulations; for neuron i:

xi,t = (1− ∆t

τ
)xi,t−1 +

∆t

τ
(
∑
j

Wjirji,t−1 +Wuiut−1) +N(0, 0.1) (3)

Output was generated by taking all recurrent network neurons’ activities and passing them through
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a weighted output unit

onetwork = Woutr + bout

where Wout ∈ RN×1 are the neural output weights and bout is the output unit’s bias term. RNNs

were trained by backpropagation through time using AdamOptimizer with a least square error

objective function.

To apply an amplifying or dampening neuromodulatory effect, target neurons’ weights were scaled

by the neuromodulatory factor. For whole network neuromodulation this effect was applied to all

neurons in the RNN; for subpopulation neuromodulation the effect was applied only to the selected

subpopulation of neurons.

For the modified Go-NoGo task, RNNs were trained until one of two possible stop criteria was

met: 1) average trial least square error over the last 50 trials was under a threshold of 1, or 2)

10,000 training trials was reached. Performance on the task was then assessed by evaluating the

percentage of test trials that matched the following performance criteria: for Go trials, output was

required to reach 1.0 ± 0.2 by timestep 120 (full trial was 200 timesteps); for NoGo trails, output

was required to be 0.0± 0.2 and for AntiGo trails −1.0± 0.2 at timestep 120.

Comparison to context-dependent cued model. For comparison, we created a cue-driven

RNN model and trained it on the Modified Go-NoGo task. The cue, which we refer to as the “con-

text cue”, was delivered through an additional input channel and signaled which output behavior

was desired. We created models with two types of cues: transient cues were constant value inputs

present only during the stimulus input period (t=0 to t=75); persistent cues were constant value

inputs across the whole trial. For comparisons between models, we ran models with cue pairs of

+1.0/-1.0 (2.0 sep in Extended Data Fig. 1d,e), +0.5/-0.5 (1.0 sep), and +0.2/-0.2 (0.4 sep).

To compare the neuromodulatory and context-cued RNNs tolerance to noise, we ran two types

of simulation experiments. First, we added Gaussian noise of zero mean and standard deviation
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ranging from 0 to 4 to all input signals and measured RNN performance as the difference between

target and actual output. At each level of noise, we simulated 4 independent models 100 times

each and averaged their performances (Extended Data Fig. 1d). In a second experiment, after

training, we simulated pure intrinsic network activity (no inputs). We again added Gaussian noise

of zero mean and standard deviation ranging from 0 to 4. For each batch of 100 simulations on 4

replicate networks, we examined the consistency of final network states (t=200). To measure this,

we computed the mean Euclidean distance of the 100 simulations final-time-step states from the

centroid, giving a measure of final network state spread. Larger mean Euclidean distance (higher

spread) indicated more variable activity trajectories; lower mean distance (lower spread) indicated

highly consistent activity trajectories (Extended Data Fig. 1e).

The phase portraits with flow fields were created by simulating a network to produce two state tra-

jectories from distinct behavioral contexts. For this we used a neuromodulatory network (fnm=9)

and a context-cued model with persistent cues 0/+2.0. For each network configuration (with and

without neuromodulator, and cued model), we computed the derivative of the neurons’ rates across

the trajectories to generate vector fields depicting the intrinsic flow fields of the network in the

absence of any driving input. For the exogenously cued model, we then calculated the external

drive required across the alternative cue-driven trajectory (cue=+2.0) to achieve the corresponding

activity trajectory. We projected state trajectories and flow fields into the first three PCA space

for visualization (Extended Data Fig. 1f).

Neuromodulation of multiple subpopulations and multiple levels. For neuromodulation of

non-overlapping subpopulations, same-sized groups of neurons were choosen randomly without any

overlap and neuromodulator applied to each for a given behavior. For overlapping subpopulations,

groups of neurons were chosen randomly allowing overlap (Extended Data Fig. 6).

Neuromodulation at different levels (“multi-factor networks”) was done by applying different neu-

romodulation factors (fnm). For the 9-behavior modified Go-NoGo this was done using factors

∈ [1 : 1 : 9], i.e., for Behavior 1 no factor was applied (fnm = 1), for Behavior 2 fnm = 2, for

Behavior 3 fnm = 3, et cetera.
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To test networks across the range of subpopulation sizes with single or multiple neuromodulator

factors on n-behavior modified Go-NoGo tasks, stop criteria were adjusted to account for the in-

creased behaviors: 1) average trial least square error over last n*25 trials was under threshold of

1, or 2) 15,000 training trials was reached. Performance on the tasks was assessed as before. For

overlapping subpopulations, overlap was quantified in two ways. For each network, the number

of neurons neuromodulated in 2 or more subpopulations was measured (Extended Data Fig. 6d).

Overlap was also quantified by measuring the average number of neuromodulated subpopulations

a neuron in the network was a member of (Extended Data Fig. 6e).

Single neuron inputs, functional clustering, and selectivity index. Neural activity in a

RNN is a complex function of all the neuron activities tracing all the way back in time. To un-

derstand how neuromodulation shifted synaptic inputs at the single neuron level, we considered

the first time point in a trial. For any trial, at t=0 all activities are randomly initialized from a

normal distribution. As a result, at t=1, a neuron reacts only to the weighted inputs of its incom-

ing connections, uncontaminated by propagating recurrent activity dynamics from past timepoints.

Analysis of neuron activity at this timepoint is shown in Extended Data Fig. 7a–c.

In order to examine whether trained models contained functionally specialized neurons, we grouped

neuron activities by combination of subtask (which maps one-to-one with neuromodulatory state)

and stimulus given (“stimulus-subtask combinations”). We averaged activity of each neuron over

time and trials within each group. This resulted in a matrix of time-trial averaged neuron activities

with a number of rows equal to the stimulus-subtask combinations, and number of columns equal

to the number of neurons. Using k-means, we clustered neurons with similar activity levels across

stimulus-subtask combinations. We computed a silhouette score to find the optimal number of

clusters, which for the RNN in Extended Data Fig. 7, was 6. The silhouette score computed for

5 and 6 clusters differed only by 0.7% and the additional cluster was very small and similar to an

existing cluster, so we conducted further analysis with 5 clusters for simplicity.

To measure the selectivity of individual neurons for particular stimulus-subtask combinations, we
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calculated a “selectivity index” (si) for each neuron j:

sij =
r̄max
j − r̄second max

j

r̄max
j

where r̄j is the average firing rate of neuron j over the trial duration, r̄max
j indicates the maximum

r̄j across all the stimulus-subtask combinations and r̄second max
j indicates the second highest r̄j over

all the stimulus-subtask combinations. The selectivity index thus captures a normalized approxi-

mation of how uniquely active a neuron was for a given stimulus-subtask combination.

Network population dynamics. To represent whole network population activity dynamics we

sought a low dimensional representation of whole population activity. We used principal com-

ponent analysis (PCA) since the leading components capture the largest projections of activity

variability, which we hypothesized would effectively separate our neuromodulatory conditions if

large differences occurred [54]. We found this was the case. We found qualitatively similar results

using multidimensional scaling which finds projections designed to best preserve distances in high-

dimensional activity space. For our figures we display the first 3 PCs, as these captured a large

amount of the activity variance (80–92% explained across the analyses) and effectively represent

the activity dynamic differences in the analyses.

To map the neuromodulation-dependent activity subspace, we generated 100 independent stimuli

series consisting of random numbers drawn from a uniform distribution between 0 and 1 at each

time point (t=0 to t=200) and fed this into the RNN with and without neuromodulation (shotgun

stimulus mapping from Extended Data Fig. 10a), which defined non-overlapping subspaces of ac-

tivity space.

To analyze neuromodulation transition curves we compared activity under intermediate neuro-

modulation levels with linear interpolation. Linear interpolation was done by evenly dividing the

distance between no and full neuromodulation activity states into 9 sections analogous to the 9

neuromodulation levels assessed. These 9 points in activity space were then used to generate output

that is plotted in Extended Data Fig. 11. The geometry of the neuromodulation-based transition
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was assessed by calculating the Euclidean distance of intermediate neuromodulation level states at

a given trial timepoint to the nearest point on the line connecting no and full neuromodulation

states at that timepoint. These distances are plotted in Fig 3i. The angle of departure (AoD) was

defined as the angle formed by the line between no and full neuromodulation states and the line

between no neuromodulation and the first neuromodulation level states, which can be calculated

as:

v⃗1 = p⃗F − p⃗N

u⃗1 = p⃗L1 − p⃗N

AoD = cos−1 u⃗1 · v⃗1
|u⃗1||v⃗1|

where p⃗N is the network state with no neuromodulation, p⃗F is the network state with full neuro-

modulation, p⃗L1 is the network state with the first level of neuromodulation.

EC50. The EC50 of a network was defined as the level of neuromodulation that led to half the

output of full neuromodulation. For the results reported, we used EC50 calculated for the positive

stimulus. For this stimulus in the modified Go-NoGo task, a non-neuromodulated network outputs

+1 and a fully neuromodulated network outputs 0 (measurements for output level were taken at

0.5 s through the trial); the EC50 for the network in this case is the amount of neuromodulator

required to output 0.5. The EC50 was calculated by fitting a sigmoid curve to the progression of

output (from +1 to 0 in this case) with increasing neuromodulation level (Fig. 3d)

output = 1− 1

1 + ea·fnm+b

where fnm is the neuromodulation level. EC50 neuromodulation level was calculated by finding

the intersection of the sigmoid and the half-maximal output; for half-maximal output of 0.5, EC50

= −b/a. Sigmoid curves were fit using a least squares fit.

Drosophila sugar sensitivity task. We implemented a computational version of Inagaki et al.

2012 to train our network models. During training, models were presented with a constant sugar
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concentration (external input proportional to sugar concentration) for 100 timesteps (equivalent to

500 ms) and trained to output a probability of PER. For fed and 2-day starved training we used a

piece-wise linear approximation estimated from Inagaki et al. 2012. To compare boxplots of MAT,

one-way ANOVA followed by t-test with Bonferroni correction was used as in Inagaki et al. 2012.

MAT. Analogous to the analysis done for flies in Inagaki et al. 2012, for each RNN a sigmoid was

fit

PER =
1

1 + e−a·log2
xsugar
MAT

where a is the slope of the sigmoid. When PER = 0.5 then xsugar = MAT . Sigmoid curves were

fit using a least squares fit.

For intermediate neuromodulatory level (fnm=3) MAT variability analysis, a normalized change in

MAT (%∆MAT) was calculated:

%∆MAT =
MATfnm=3 −MATfnm=1

MATfnm=5 −MATfnm=1

where MATfnm=x is the RNN’s MAT with neuromodulation factor x. %∆MAT gives a network

normalized metric for how much the intermediate neuromodulation (fnm=3) moved the fly from

no neuromodulation (fnm=1) to full neuromodulation (fnm=5) sensitivity.

Electrical modulation. We administered electrical modulation as an external current applied

for the duration of the trial. “On-target” modulation was applied to the neuromodulated neuron

population and “random” modulation was applied to a randomly selected group of neurons of equal

size; these could include both neuromodulated or non-neuromodulated neurons. All neurons (both

excitatory and inhibitory) within the selected subpopulation were given identical external current

modulation. For fixed electrical modulation simulations, a current of magnitude 1 was applied (+1

for excitatory modulation; -1 for inhibitory).

For graded electrical modulation, networks that did not achieve e-mod50 at maximum stimulation
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(-9 units) were assigned a surrogate e-mod50 value of -10 to calculate correlation to EC50. To

account for possible missed correlation due to this substitution, correlation of EC50 to output at

maximum modulation (-9) was also calculated (Extended Data Fig. 13c).

Data and code availability

The code and RNNmodels in this work will be made available at https://github.com/tsudacode/

neuromodRNN
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Extended Data Fig. 1 | Noise robustness of neuromodulated and external cue-driven networks.
a, Neuromodulation is a fundamental biological mechanism, underlying e.g. how hunger level dictates a
bear’s behavior when encountering a mystery mushroom. b, Modified Go-NoGo task in neuromodulated
network. Neuromodulatory effect alters network configuration to produce different behaviors. c, Standard,
context-dependent model with contextual cue input. External cue is required to drive activity to generate
different outputs. d, Output error for neuromodulated and exogenously cued models with increasing in-
put noise. Noise is drawn from normal distribution with standard deviation σ. Transiently cued models
(green) — biologically more realistic than persistently cued (red) — have errors that increase more rapidly
with increasing noise compared to neuromodulated (black—100% of network, blue—10% network; dashed
lines factor 2.0, solid lines factor 9.0) or persistently cued models (red). e, Average Euclidean distance of
neural trajectory endpoint between replicates when given no driving input across increasing levels of input
noise. Neuromodulated networks (blue, black) generate network dynamics robust to noise, unlike cued mod-
els (green, red) which rapidly become unpredictable, exhibiting high variability — measured as increased
Euclidean distance of trajectory endpoints on replicate trials — as noise levels increase. Cued models in d,e
are highly dependent on specific cue values and separation amplitude between cues (dotted lines represent
networks that had input cue amplitudes separated by 0.4 arbitrary units (au), dashed lines for cues sepa-
rated by 1.0 au, solid line for cues separated by 2.0 au). f, Neuromodulation changes the flow field of the
network in activity space (differences of vector fields in left and middle PCA activity plots). Blue vectors
represent network’s internal flow field (no driving input) along trajectories. Cue-based model (right) relies
on external input (red arrows) to drive the network along desired trajectory in phase space (yellow arrows
for Context 2 trajectory). For visualization clarity, flow field vectors indicate direction of activity change
(without magnitude) and are shown only when network activity is changing more than a threshold of 0.02
units of Euclidean distance per timestep in full network activity space.
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Extended Data Fig. 2 | Neural activity under neuromodulation. a, Mean whole network population
activity for example RNN over 100 trials after training. Activity under neuromodulation (blue) is not simple
transform of activity without neuromodulation (black). b, Difference of mean activity with and without
neuromodulation (∆activity) on + vs ∅ stimulus trials for individual neurons. Each color represents an
independently trained RNN (10 colors total). Points representing simple scaling of neural activity under
neuromodulation would lie on dotted diagonal line.
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Extended Data Fig. 3 | Relationship between neuromodulated weight configurations. For the
contradictory end behaviors in response to shared stimuli, as in the modified Go-NoGo task, a single network
without neuromodulation cannot simultaneously learn both tasks as depicted in this schematic by the lack
of overlap between weight space that solves task 1 (T1) and task 2 (T2). By scaling weights in the network
by a factor f , neuromodulation allows overlap between the f ·T1 and T2 spaces. The network solves task 1
when weights are unscaled (T1), and task 2 when weights are scaled (f ·T1 ∩ T2).
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Extended Data Fig. 4 | Neuromodulation weight scaling mechanism works over a range of
factors. a, A range of neuromodulation factors were tested on the modified Go-NoGo task. Factors were
applied to weights initialized as described in Methods. b, All amplifying factors tested supported task
learning in a similar number of training trials. Dampening factors that were either too small (e.g. 1.11) or
too large (e.g. 100) led to longer training. c, All amplifying factors tested had perfect task performance.
Dampening factors that were either too small or too large led to impaired performance, though better
than without neuromodulation (factor=1). Extreme strong dampening effectively silences all transmission
between neurons, impairing information flow in the network. Too little scaling (e.g. 1.11 factor dampening)
did not create enough separation to distinguish the behaviors.
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(subpop1, subpop2) unlock unique behaviors (Behavior 2 (+ stimulus → 0 output, ∅ → -1), Behavior 3 (+
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conformations of neuromodulation of a single network support multi-behavior task (9-behavior modified
Go-NoGo). Neuromodulation with a single factor (e.g. fnm = 2.5) of non-overlapping and overlapping
subpopulations across the spectrum of sizes could learn the full 9-behavior task, with larger overlapping
subpopulations less consistently learning the full task (“successful/total” refers to independent networks
that achieved successful training loss criteria over total attempted). Neuromodulation of the full network
with different factors (fnm ∈ [1:1:9]) consistently supported the 3 behavior task (5/5 successful/total), but
not >3 behavior tasks (4-behavior 0/5; 5-behavior 0/5; 9-behavior 0/5 successful/total). Subpopulation
neuromodulation with different factors (fnm ∈ [1:1:9]) could also learn the 9-behavior task with overlapping
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subpopulations. b, Single factor networks test performance on 9-behavior task across networks that achieved
training loss criteria. c, Same as b but for multi-factor networks. d, Fraction of neurons neuromodulated for
≥2 conditions across range of neuromodulated subpopulation sizes. e, Mean number of conditions a neuron
was neuromodulated for across range of subpopulation sizes. For d,e, 5 replicates per condition. All error
bars are SEM.
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Extended Data Fig. 7 | E-I difference scaling drives differential activity patterns. a, Differential
response of an individual neuron (neuron 1) in a whole-network neuromodulated RNN to same stimulus
depending on neuromodulation presence. b, At the start of a trial, neuromodulation causes neuron 1 to
receive different synaptic current input, shifting its firing rate. c, The different synaptic input under neuro-
modulation occurs due to amplification of the net difference in incoming excitatory and inhibitory weights;
E/I balance is unchanged. d, E-I difference across the whole network is also amplified; E/I remains un-
altered. e, Though all neurons in the RNN are influenced by the same neuromodulation, some exhibited
activity selective for particular stimulus-neuromodulation combinations (high si; example neuron bottom
right, si=0.89; see Methods); others were less selective (low si; example neuron bottom left, si=0.01). f,
Neurons formed 5 clusters—2 predominantly inhibitory, 3 predominantly excitatory—whose activity coded
for different stimulus-neuromodulation combinations. Each column of the heatmap is the mean firing rate of
an individual neuron across conditions with excitatory/inhibitory identity labeled below. (Nm: neuromod-
ulation present or absent; Stim: stimulus presented) g, Amplification of relative weight differences (∆s of
mean weight) between inhibitory clusters drives cluster activity switches under neuromodulation: increased
inhibition of clusters 2 and 4 by cluster 5 and disinhibition of cluster 3. In all panels light blue represents
modulator present and grey/white modulator absent. Error bars are SEM.
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clusters led to recovery of performance (perturbation ≤ 0.10 for clusters 2 and 5 with null stimulus without
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derlying cluster dynamics.
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Extended Data Fig. 9 | Independent networks have unique clustering patterns & different net-
work configurations exhibit less selective neurons and complex, overlapping clustering profiles.
a, Neural selectivity profiles for 3 networks trained independently on the same condition (100% modulated,
2-behavior). All histograms exhibit high selectivity peak. b, Each network from a exhibits a unique neural
activity clustering pattern including number of clusters and excitatory-inhibitory composition of clusters (see
Extended Data Fig. 7f for run 1 cluster heatmap). c, Selectivity index histograms for example networks with
different configurations and tasks. Compared to a network in which all neurons were neuromodulated trained
on the 2-behavior modified Go-NoGo, network configurations with smaller neuromodulated subpopulations
and more behaviors exhibited less selective neurons and more non-selective neurons. d, A network with
10% neuromodulated subpopulation trained on the 2-behavior modified Go-NoGo formed 2 activity clusters,
showing high overlap across stimulus-context conditions. e, The stimulus-context clustering profile for a
network with 10% neuromodulated subpopulations (non-overlapping) trained on the 9-behavior modified
Go-NoGo task. Cluster profiles are complex and highly overlapping. d,e cluster heatmaps and neuron type
labels are same as b.
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Extended Data Fig. 10 | Variability in network neuromodulatory transitions. a, Shotgun stimulus
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activity manifolds on which individual trajectories occur. b, Left: Output to positive stimulus at time
point 0.5s of 29 networks at varying levels of neuromodulation. Each network was independently trained
with amplifying neuromodulation factor 9 on the modified Go-NoGo task and then tested at intermediate
neuromdulation levels. Right: Sigmoid fits to raw data with EC50 of each curve indicated by dotted vertical
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transition (orange). For all PCA, top 3 PCs accounted for 80–92% of activity variance.
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Extended Data Fig. 12 | RNN models of Drosophila exhibit emergent transition behaviors
and high variability of neuromodulator sensitivity. a, For 100mM sugar, a RNN with intermediate
neuromodulation (fnm=3; cyan) generates activity between the neuromodulation extremes (none; grey and
fnm=5; magenta). b, Activity trajectory at MAT sugar concentration for intermediate neuromodulation
of a RNN lies between those for neuromodulation extremes. c, Across sugar concentrations, intermediate
neuromodulation trajectories (cyan) lay between neuromodulation extremes (grey and magenta), forming a
3-layer activity curtain ending on curved line (dotted lines) defined by trajectory endpoints across the sugar
spectrum. d, Independently trained RNNs (n=30) exhibited high variability of PERs at 100mM sugar (0.10
to 0.66) and MATs (48 to 194mM). e, Normalized MAT change (%∆MAT) vs E/I ratio for whole RNN
and subpopulations. %∆MAT had significant negative correlation to E/I ratio of the non-neuromodulated
neurons (p<0.05, R=-0.39). f, %∆MAT E/I ratio correlation was driven by recurrent weights within the
non-neuromodulated subpopulation 3○, rather than recurrent weights within the neuromodulated subpop-
ulation 1○, weights from neuromodulated to non-neuromodulated subpopulation 2○, or weights from non-
neuromodulated to neuromodulated subpopulation 4○ as shown by Pearson correlation p-values (p) and
coefficients (R) (for 1○, 2○, 4○ correlation significance scores shown, scatter plots not shown).
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Extended Data Fig. 13 | Targeted electrical modulation shifts network dynamics through inde-
pendent circuit effect. a, Behavioral and activity shifts in absence of neuromodulation. Top: behavioral
shifts with on-target e-mod. Bottom: activity dynamics under e-mod. Activity trajectories without e-mod
are in black (neuromodulated trajectories in light blue for reference); e-mod can shift trajectories off black
toward neuromodulated activity space (orange arrow). b, Same as a with present neuromodulation. Top:
behavioral shifts. Bottom: Activity trajectories without e-mod are in blue (non-neuromodulated trajecto-
ries in grey for reference); e-mod can shift trajectories off blue toward non-neuromodulated activity space
(green arrow). c, Some networks did not reach an output level equivalent to half the response of maximal
neuromodulation (EC50) even at the highest level of electrical modulation given of -9 units. To assess all
networks electrical modulation sensitivity in comparison to neuromodulation sensitivity, network output at
maximum electrical modulation is compared to EC50. Like EC50 vs e-mod50, there is no significant corre-
lation (p=0.10).
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Extended Data Appendix

A. Relationship to isolated gain modulation
Gain modulation changes the slope of the unit activation function (the neuron’s “intrinsic excitabil-
ity”) by changing a gain parameter g:

r = f(x; g)

where r is the firing rate and x is the synaptic current variable. For the sigmoid activation function
this corresponds to:

r =
1

1 + e−gx

To see the effective change on the activation function of amplifying or dampening the weights we
can compare the effect of gain modulation to weight modulation on the equation that governs
neural dynamics:

τ ẋi = −xi +
∑
j

Wjirji +Wuiu+N(0, 0.1)

If we assume no input and no noise, we get a simplified equation describing neuron dynamics:

τ ẋi = −xi +
∑
j

Wjirji

Gain modulation g gives:

τ ẋi = −xi +
∑
j

Wjirji(g)

while weight modulation with a neuromodulation factor m gives

τ ẋi = −xi +
∑
j

m ·Wjirji(1)

To compare each type of modulation, we can consider the modified terms:

1 · r(g) = 1

1 + e−gx
(gain effect)

m · r(1) = 1
1
m + 1

m · e−x
(weight effect)

=
1

1
m + e−x−lnm

These effects are equivalent when

g = −
ln(1−m

m + e−x−lnm)

x
(1)

So generally gain modulation, g, is only equivalent to a weight modulation by m if the gain term
is precisely the time varying function of x defined by equation (1). Furthermore, for some values
of m, there is no equivalent g for certain values of x. E.g. for m = 2, g is defined by equation (1)
only for x < 0. For arbitrary values of x with fixed, constant g and m:

rji(g) ̸= m · rji(1)

except when g = m = 1, i.e., when there is no modulation. Thus, weight neuromodulation and
gain modulation operate through different effects.
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B. Chemical and electrical modulation
Chemical (neuromodulation) and electrical modulation in our network operate in directionally
similar manner with qualitatively different effects. This can be seen by inspecting the equation
governing each neuron i’s synaptic current variable and thereby the network’s activity dynamics:

τ ẋi = −xi +
∑
j

Wjirji +Wuiu+N(0, 0.1)

For any given neuron we can break up the terms by whether an input neuron is in the neuromod-
ulated subpopulation or not:

τ ẋi = −xi +
∑
k

Wkirki +
∑
q

Wqirqi +Wuiu+N(0, 0.1)

where k is the index for non-neuromodulated neurons and q is the index for neuromodulated
neurons.
Neuromodulation in our model acts by scaling the target neurons outgoing weights by a factor f :

τ ẋi = −xi +
∑
k

Wkirki + f ·
∑
q

Wqirqi +Wuiu+N(0, 0.1)

Electrical stimulation acts by adding exogenous synaptic current to target neurons. For a given
neuron i in the non-neuromodulated subpopulation, electrical stimulation of the neuromodulated
subpopulation is felt through altered incoming firing rates:

τ ẋi = −xi +
∑
k

Wkirki +
∑
q

Wqirqi,Estim +Wuiu+N(0, 0.1)

and a neuron i in the neuromodulated subpopulation is additionally affected through direct stim-
ulation:

τ ẋi = −xi +
∑
k

Wkirki +
∑
q

Wqirqi,Estim +Wuiu+ uEstim +N(0, 0.1)

Thus we can see that both chemical and electrical stimulation act through the same term in the
equation that governs neural synaptic currents yet in different manners. Neuromodulation directly
scales presynaptic weighted inputs from neuromoduated neurons, whereas electrical stimulation
acts by altering the firing rate of presynaptic neuromoduated neurons with an additional direct
influence on the synaptic current if the neuron of interest is in the electrically stimulation subpop-
ulation.
The similarities of these forms of modulation (acting through the same terms of the synaptic
current equation) indicates why they can have similar affects on network output in some circum-
stances. Nevertheless, the differences in how they affect the synaptic current equation are propa-
gated through the recurrent connections of the network at each time step which drives the distinct
dynamical changes seen under chemical versus electrical modulation.
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