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Abstract—The basolateral amygdala (BLA) and the medial

prefrontal cortex (mPFC) modulate anxiety and social behav-

iors. It remains to be elucidated, however, whether direct pro-

jections from the BLA to the mPFC play a functional role in

these behaviors. We used optogenetic approaches in behav-

ing mice to either activate or inhibit BLA inputs to the mPFC

during behavioral assays that assess anxiety-like behavior

and social interaction. Channelrhodopsin-2 (ChR2)-

mediatedactivationofBLA inputs to themPFCproducedanx-

iogenic effects in the elevated plus maze and open field test,

whereas halorhodopsin (NpHR)-mediated inhibition pro-

duced anxiolytic effects. Furthermore, activation of the

BLA-mPFC pathway reduced social interaction in the

resident-intruder test, whereas inhibition facilitated social

interaction. These results establish a causal relationship

between activity in the BLA-mPFC pathway and the bidirec-

tional modulation of anxiety-related and social behaviors.
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Neuropsychiatric Disease. � 2015 The Authors. Published by
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under theCCBY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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INTRODUCTION

The basolateral amygdala complex (BLA) is considered to

be a crucial neural hub for the modulation of anxiety-
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related and emotionally-driven behaviors (Davis, 1992;

Bremner, 2004; Tye et al., 2011; Dias et al., 2013;

Felix-Ortiz et al., 2013; Janak and Tye, 2015; Namburi

et al., 2015; Allsop et al., 2014). In humans, the BLA exhi-

bits hyperactivity in most forms of anxiety disorders

(Rauch et al., 2003), and in rodents BLA hyperexcitability

and hypertrophy is associated with an enduring facilitation

of anxiety-like behaviors (Roozendaal et al., 2009;

Rosenkranz et al., 2010). Along with a critical role in anx-

iety, research has established a crucial role for the BLA in

the modulation of social behavior (Kling and Steklis, 1976;

Katayama et al., 2009; Bickart et al., 2014; Felix-Ortiz and

Tye, 2014). Given the common comorbidity between anx-

iety disorders and social deficits (Stein and Stein, 2008;

Kennedy and Adolphs, 2012; American Psychiatric

Association, 2013), increasing efforts have been directed

to understand BLA mechanisms underlying the regulation

of anxiety and social behaviors (Allsop et al., 2014).

Despite substantial research examining the role of the

BLA in anxiety-related and social behaviors, there is still

much work to do in elucidating how the BLA interacts

with downstream structures to modulate these

behaviors. Application of optogenetics to manipulate

specific projections (Boyden et al., 2005; Deisseroth,

2011; Tye et al., 2011; Tye and Deisseroth, 2012) allows

us to map the functional role of discrete neural projections

with high cellular and temporal precision. We have

already tested the functional role of some BLA targets,

such as the central nucleus of the amygdala (CeA) and

the ventral hippocampus (vHPC), and found that

optogenetically-mediated activation or inhibition of neural

transmission from the BLA to either region produces bidi-

rectional changes in anxiety-like behavior (Tye et al.,

2011; Felix-Ortiz et al., 2013). In addition, we have

observed bidirectional modulation of social behavior by

targeting the BLA-vHPC pathway (Felix-Ortiz and Tye,

2014). These findings support the hypothesis that BLA

interactions with downstream targets such as the CeA

and vHPC are sufficient to alter anxiety, and that distinct

projections can contribute opposing forces in guiding

anxiety-related behavior.

Recent attention has been given to the medial

prefrontal cortex (mPFC), which shares reciprocal

projections with the BLA (Pitkänen, 2000; Gabbott et al.,

2005; Hoover and Vertes, 2007), and exhibits profound

alterations in a wide range of anxiety and social disorders

(Milad and Rauch, 2007; Gotts et al., 2012).

Electrophysiological recordings have revealed that
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increased excitability in the mPFC correlates with height-

ened anxiety-related behavior in the open field test and

elevated plus maze (Bi et al., 2013), and that some pop-

ulations of mPFC neurons fire preferentially to the ‘‘anxio-

genic’’ open arms of the plus maze versus the ‘‘safe’’

closed arms, and vice versa (Adhikari et al., 2011). The

mPFC, along with the BLA (Likhtik et al., 2014; Likhtik

and Paz, 2015), is capable of representing states of high

and low anxiety. The mPFC has also been shown to rep-

resent social interactions, with some populations of neu-

rons exhibiting increased activity and others showing

decreased activity during bouts of social interaction

(Jodo et al., 2010). Thus, the mPFC appears to be a

key component of the neural circuitry underlying social

and anxiety-related behaviors. Although it has been pro-

posed that direct interactions between the BLA and

mPFC may be vital for the modulation of anxiety and

social behaviors (McClure et al., 2007; Adhikari, 2014),

a causal role for BLA projections to the mPFC has yet

to be established. Using projection-specific optogenetic

approaches in freely-moving mice, we tested how activa-

tion or inhibition of BLA projections to the mPFC modu-

lates anxiety-like and social behaviors.
EXPERIMENTAL PROCEDURES

Subjects

All procedures were approved by the Massachusetts

Institute of Technology Committee on Animal Care, in

accordance with the NIH Guide for the Care and Use of

Laboratory Animals. All experiments were conducted on

wild-type male C57BL/6 mice aged 6–7 weeks (Jackson

Laboratory, Bar Harbor, ME). A total of 43 mice were

used in this study. Mice were group-housed in clear

Plexiglas homecages with access to food and water

ad libitum. Mice were maintained on a 12 h reverse

light/dark cycle. For social interaction experiments, 3–

4 week old juvenile male C57BL/6 mice were used as

the social stimuli (intruders).
Surgery

Mice were anesthetized with 1.5–2.0% isoflurane

gas/oxygen mixture and mounted on a stereotaxic

apparatus (Kopf Instruments, Tujunga, CA, USA) for

viral transduction of the BLA. A midline incision was

made down the scalp and craniotomies were made

using a dental drill. The stereotaxic coordinates used for

BLA transfection were �1.6 mm anterior-posterior (AP),

±3.35 mm medial–lateral (ML), and �4.9 mm dorsal–

ventral (DV), relative to bregma. A 10 ll microsyringe

with a 33 G needle (Nanofil; WPI, Sarasota, FL, USA)

was used to deliver the viral solutions into the BLA at a

rate of 0.1 ll/min using a microsyringe pump

(UMP3/Micro4; WPI, Sarasota, FL).

For inhibition, bilateral viral transduction of the BLA

(0.5 ll per side) with serotype-5 adeno-associated viral

vectors (AAV5) that carried an enhanced third-

generation version of the yellow light-sensitive chloride-

pump Natronomonas pharaonis halorhodopsin

(eNpHR3.0), which was fused to the enhanced yellow
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation
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fluorescent protein (eYFP) and was expressed under

the control of the Ca2+/calmodulin-dependent protein

kinase II alpha (CaMKlla) promoter (AAV5-CaMKll

a-eNpHR3.0-eYFP). For activation, the BLA was

transfected unilaterally with similar viruses that coded

for the blue light-sensitive cation-pump Chlamydomonas
reinhardtii channelrhodopsin-2 (ChR2) fused with eYFP

(AAV5-CaMKlla-ChR2(H134R)-eYFP). Mice in the

control groups were transduced with viruses mediating

expression of eYFP alone (AAV5-CaMKlla-eYFP). All

viral aliquots were obtained from the University of North

Carolina Vector Core (Chapel Hill, NC, USA). The DNA

sequence maps for these viral constructs can be found

online at www.optogenetics.org. Following viral infusion,

needles were kept at the infusion site for �10 min to

allow for viral diffusion. They were then slowly

withdrawn at an approximate rate of �1 mm/min.

Optical fibers were chronically implanted over the

mPFC to either inhibit or activate BLA terminals (optical

fiber length, 3 mm; 300 lm core; NA = 0.37; Thorlabs,

Newton, NJ, USA). Optical fibers were held in stainless

steel ferrules (Precision Fiber Products, Milpitas, CA,

USA). The stereotaxic coordinates used for unilateral

fiber implants were +1.7 mm AP, ±0.3 mm ML, and

�1.9 mm DV, relative to bregma. For bilateral implants,

fibers were implanted with a 10� angle and the

stereotaxic coordinates used were +1.7 mm AP,

±0.9 mm ML, and �2.1 mm DV. Fiber implants were

anchored to the skull with a layer of adhesive cement

(C&B Metabond; Parkell, Edgewood, NY, USA) and

covered with a layer of black dental cement (Ortho-Jet;

Lang, Wheeling, IL, USA). The incision was securely

closed using sutures. Postoperative recovery was

facilitated by maintaining body temperature using a heat

lamp and reducing pain with Ketoprofen (5 mg/kg) or

Meloxicam analgesic (1.5 mg/kg). �6–8 weeks were

allowed for viral expression before behavioral testing.

Optical manipulations

Optical fibers were connected to patchcords (Doric;

Québec, Canada), which were in turn connected to

lasers (OEM Laser Systems; Draper, UT) with FC/PC

adapters located over the behavioral testing arenas.

Laser output was controlled with a Master-8 pulse

stimulator (A.M.P.I.; Jerusalem, Israel). For NpHR

experiments, a 100 mW 594 nm DPSS laser was used

to deliver 5 mW of constant yellow light. For ChR2

experiments, a 100 mW 473 nm DPSS laser was used

to deliver 5 ms pulses of blue light at 5 mW and at a

frequency of 20 Hz.

Behavioral assays

All behavioral tests were performed during the active dark

phase of the animals. Mice were allowed to acclimate to

the testing rooms for at least 1 h prior to experiments.

Elevated plus maze (EPM). The EPM apparatus

consisted of two open arms (30 � 5 cm) and two

enclosed arms (30 � 5 � 30 cm) extending from a

central intersection platform (5 � 5 cm). The apparatus
of anxiety-related and social behaviors by amygdala projections to the
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was elevated 75 cm from the floor. Mice were connected

to the patch cables, placed in the center of the apparatus,

and allowed 1–5 min for recovery from handling before

behavioral assessment, which lasted 9 min. The test

session was divided into 3 min epochs with alternating

laser manipulation (OFF–ON–OFF). An EthoVision-XT

video tracking system (Noldus; Wageningen,

Netherlands) was used to track the mouse location in

the apparatus. Mouse location was quantified relative to

the mouse center.

Open field test (OFT). The open field arena consisted

of a transparent Plexiglas cube (50 � 50 � 53 cm), and it

was divided into a center zone (25 � 25 cm) and an outer

zone in the periphery. Mice were connected to the patch

cables, placed in the center, and allowed 1–3 min to

recover from handling before assessment for 9 min. The

OFT session was divided in 3 min epochs with

alternating laser manipulation (OFF–ON–OFF). OFT

was also assessed with EthoVision-XT video tracking.

Mouse location, movement, and velocity were assessed.

All measurements were quantified relative to the mouse

center.

Social interaction assay. A resident-juvenile intruder

paradigm was used to test social interaction. The test

mouse was allowed to freely explore his homecage for

1 min (habituation phase). Then, an unfamiliar juvenile

male mouse was introduced for 3 min (test phase). This

test was performed twice over two days with different

juvenile intruders each day. The amount of time the test

mice spent performing social behaviors was scored by

two experimenters using commercial software

(ODLogTM; Macropod Software). The social behaviors

quantified include body sniffing, anogenital sniffing,

direct contact (e.g., pushing the snout or head

underneath the juvenile’s body, or crawling over or

under the juvenile’s body), and close chasing (within

1 cm distance). These behaviors were summed up to

calculate an overall social interaction score for each

mouse. Non-social behaviors were also quantified,

including digging, walking/cage sniffing, rearing, self-

grooming, and freezing. Digging, walking/cage sniffing,

and rearing were summed up to calculate an overall

exploration score for each mouse. Each test mouse

underwent two social interaction sessions that lasted

3 min and were separated by an interval of 24 h. Laser

manipulation was done in only one of the sessions in a

counterbalanced manner across animals.

Histology

Mice were sacrificed with a lethal dose of sodium

pentobarbital (20–30 mg/kg) and then transcardially

perfused with ice cold 4% paraformaldehyde (PFA,

pH = 7.3). Brains were extracted, fixed in 4%-PFA

overnight, and equilibrated in 30% sucrose. Coronal

sections at 40 lm were made using a sliding microtome

(HM430; Thermo Fisher Scientific, Waltham, MA, USA).

Immunohistochemistry. Expression of the immediate

early gene cfos was measured as a readout of neuronal
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation
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activity. Induction of cfos was achieved by

photostimulating BLA terminals within the mPFC 90 min

prior to sacrificing the mice (the same stimulation used

in behavioral experiments occurred in the homecage for

3 min). Common immunohistochemistry procedures

were used to stain for cfos. Briefly, brain sections were

washed in Triton 0.3%/PBS and 3% normal donkey

serum for 1 h, and then incubated in rabbit anti-cfos

primary antibody (1:500 dilution; Calbiochem, Billerica,

MA, USA) for 17–20 h. Brain sections were washed 4

times in 1X PBS for 10 min, then incubated in anti-rabbit

secondary antibody (AlexaFlour 647, 1:500 dilution;

Invitrogen, Grand Island, NY, USA) for 2 h at room

temperature. Four more washes in 1X PBS were made

prior and after a 30 min incubation in a DNA specific

fluorescent probe (DAPI: 40,6-Diamidino-2-Phenylindole;

1:50,000 dilution). Sections were then mounted onto

microscope slides with PVD-DABCO mounting media.

Confocal microscopy. Fluorescence images were

acquired with an Olympus FV1000 confocal laser

scanning microscope, using a 10�/0.40NA,
20�/0.75NA, or a 40�/1.30NA oil immersion objective.

Confocal images and serial Z stacks covering a depth of

10 lm were acquired using an image analysis software

(Fluoview; Olympus, Center Valley, PA). Expression of

eYFP, cfos, and DAPI was examined in tissue

containing various anterior-posterior coronal levels of

the BLA and the mPFC. Mice with eYFP expression in

cell bodies outside the primary infusion target, the BLA,

were excluded from the study.
Statistics

Two-way analysis of variance (ANOVA) was used with

group and laser manipulation as variables (GraphPad

Prism Software; La Jolla, CA, USA). Bonferroni

corrected post hoc t-tests were used to detect

significant differences. In all statistical tests, the

significance threshold was set at p< 0.05, and p-values

were adjusted to correct for multiple comparisons when

appropriate. Error bars indicate mean ± S.E.M.
RESULTS

Stimulation of BLA projections to the mPFC
produced anxiogenic effects

The BLA was unilaterally transduced with ChR2-eYFP

under the control of the CaMKIIa promoter in order to

target glutamatergic projection neurons, as previously

characterized (Tye et al., 2011). Optical fibers were posi-

tioned over the ipsilateral mPFC and 5 ms pulses of blue

light at 20 Hz (5 mW) were used to test whether stimula-

tion of BLA inputs to the mPFC could serve to modulate

anxiety-like behavior. An eYFP control group was also

prepared to control for heating, light artifacts, surgery

and tethering. Fig. 1A provides a schematic of the applied

optogenetic approach, and Fig. 1B shows representative

confocal images of an animal showing expression of

ChR2-eYFP in BLA somata and terminals in the mPFC.

The location of viral infusion and placement of fibers for
of anxiety-related and social behaviors by amygdala projections to the
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Fig. 1. Photostimulation of BLA terminals in the mPFC increased

anxiety-like behavior. (A) Illustration of infusion of viral vectors

allowing expression of either ChR2-eYFP or eYFP alone into the

BLA and optical fiber placement over the mPFC for photostimulation

(ChR2 group n= 9, eYFP group n= 8). (B) Coronal confocal

images (at 20�) show expression of ChR2-eYFP in BLA somata,

as well as in BLA terminals within the prelimbic (PL) and infralimbic

(IL) subregions of the mPFC (blue, DAPI; red, cfos; green, ChR2-
eYFP). (C) Elevated plus maze (EPM) testing consisted of 3 min

epochs with alternating laser manipulation (OFF–ON–OFF). Heat

maps show time spent at each location within the maze for a

representative ChR2-mouse during the initial OFF epoch and the ON

epoch (cooler shades represent less time and warmer shades
represent more time spent at that location). (D) ChR2-mice spent

significantly less time in the open arms of the EPM during the ON

epoch, relative to eYFP-mice and relative to the ChR2 group during

the OFF epoch. (E) Photostimulation also reduced the probability to

enter the open arms of the EPM. (F) The open field test (OFT) also

consisted of 3 min epochs with alternating laser treatment (OFF–ON–

OFF). Heat maps representing the time spent at each location are

shown for a ChR2-mouse during the first OFF epoch and the ON

epoch. (G) Average time mice spent exploring the center of the OFT

arena. The two OFF epochs are combined on the main bar graph,

and illustrated individually in the line plot inset. ChR2-mice spent

significantly less time in the center of the arena during the ON epoch,

relative to eYFP-mice and the OFF epochs. (H) No significant effects

were detected in the total distance traveled by mice in the OFT. In all

figures, data are illustrated as mean ± SEM. Numbers within bars

indicate the n’s per group. ***p< 0.001, **p< 0.01, *p< 0.05,

corrected for multiple comparisons.
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each tested animal are shown in sequential coronal draw-

ings in Fig. 4.

Anxiety-like behavior was first assessed in the EPM

test (ChR2 group n= 9, eYFP group n= 8).

Photostimulation of BLA terminals within the mPFC

reduced the time mice spent in the open arms

(Fig. 1C and D). While a two-way ANOVA did not reveal

a significant effect of the group condition (F(1,15) = 0.30,

p= 0.59), it revealed significant effects on laser

treatment (F(2,45) = 7.70, p= 0.0013) and group-by-

treatment interaction (F(2,45) = 3.33, p= 0.045).

Bonferroni corrected post hoc t-tests showed that ChR2-

mice spent significantly less time in the open arms than

eYFP-mice during the laser-ON epoch (p= 0.0008),

and that ChR2-mice spent less time in the open arms

during the laser-ON epoch than the preceding laser-
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation
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OFF epoch (p= 0.0036). The probability of entry into

the open arms when the animal was in the center of the

plus maze was also significantly lower for ChR2-mice

during laser-ON epoch (Fig. 1E; group, F(1,15) = 5.69,

p= 0.031; laser, F(2,30) = 1.48, p= 0.24; interaction,

F(2,30) = 2.08, p= 0.1421; ChR2 versus eYFP:

p= 0.0012, Bonferroni corrected for multiple

comparisons). These findings indicate that

photostimulation of BLA projections in the mPFC is

sufficient to increase anxiety-related behavior.

To strengthen the above findings, we also tested

anxiety-like behavior in the OFT (ChR2 group n= 9,

eYFP group n= 8). Photostimulation of the BLA-mPFC

pathway reduced the time mice spent exploring the

center of the open field arena (Fig. 1F and G). A two-

way ANOVA revealed significant effects for group

condition (F(1,15) = 6.61, p= 0.021), laser treatment

(F(1,15) = 3.66, p=0.075), and interaction F(1,15) = 9.59,

p=0.007). Post hoc tests confirmed significant

differences within the ChR2 group when comparing the

laser-ON and laser-OFF epochs (p=0.019), as well as

between the ChR2 and eYFP groups during the ON

epoch (p=0.003). Activation of the BLA-mPFC pathway

did not affect the total distance traveled by mice in the

OFT (Fig. 1H; group, F(1,15) = 0.46, p=0.51; laser,

F(1,15) = 0.59, p=0.45; interaction, F(1,15) = 1.94,

p=0.18). Collectively, these findings indicate that

activation of the BLA-mPFC increased anxiety-related

behaviors.
Stimulation of BLA projections to the mPFC reduced
social behavior

We next tested whether activation of the BLA-mPFC

pathway affects social behavior. We used the resident-
of anxiety-related and social behaviors by amygdala projections to the
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Fig. 2. Photostimulation of BLA terminals in the mPFC reduced

social interaction. (A) Illustration of the resident-juvenile intruder

paradigm. Two 3 min sessions separated by a 24 h interval were

conducted with counterbalanced laser treatment (ChR2 group

n= 12, eYFP group n= 10). (B) Average time resident mice spent

engaged in social-related behaviors. ChR2-mice spent significantly

less time socializing with the juvenile intruders during the laser-ON

session than eYFP-mice. (C) No significant differences were detected

in self-grooming behavior. (D) A small but significant increase was

observed in homecage exploration. (E) No significant differences

were observed in freezing/immobilization behavior. (F) Distribution of

specific social and non-social behaviors for the entire 3 min epoch (s).
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juvenile intruder paradigm in which each ‘‘resident’’ test

mouse was presented with an ‘‘intruder’’ juvenile mouse

in the homecage, and social and non-social behaviors

were examined. This test was performed twice on two

separate days with counterbalanced laser treatment

across animals. Different juvenile intruders were used

each day. A schematic of the social paradigm and laser

manipulations is provided in Fig. 2A.

Stimulation of the BLA-mPFC pathway reduced social

interaction (ChR2 group n= 12, eYFP group n= 10).

Quantification and summation of close-chasing, body

contact, body sniffing, and anogenital sniffing behavior

provided an overall social time score. Fig. 2B shows the

average social interaction time. A two-way ANOVA

showed significant effects for group condition

(F(1,20) = 8.54, p= 0.008), laser treatment

(F(1,20) = 5.37, p= 0.03), and interaction F(1,15) = 5.18,

p 0.034). Post hoc tests corrected for multiple

comparisons confirmed that ChR2-mice showed

significantly lower overall social interaction scores than

eYFP-mice during the laser-ON session (p= 0.0004).

ChR2-mice also showed reduced social interaction

during the ON session relative to the OFF session

(p= 0.0004).

No significant differences were detected in non-social

self-grooming behavior (Fig. 2C; group, F(1,20) = 0.00,

p= 0.97; laser, F(1,20) = 0.17, p= 0.68; interaction,

F(1,20) = 0.51, p= 0.48). Non-social behaviors related

to homecage exploration such as walking/cage sniffing,

rearing, and digging were also scored. A significant

increase in the overall exploration time was induced by

photoactivation (Fig. 2D), as a two-way ANOVA showed

a significant effect for group condition (F(1,20) = 8.36,

p= 0.009), laser treatment (F(1,20) = 6.53, p= 0.019)

and interaction (F(1,20) = 7.68, p= 0.012). Post hoc

tests detected a significant difference between the ChR2

and eYFP groups during the laser-ON epoch

(p= 0.0004, corrected for multiple comparisons). This

increase in exploration time could be attributed to the

significant decrease in social time. However, no

significant differences were observed on

freezing/immobilization behavior (Fig. 2E; group,

F(1,20) = 0.03, p= 0.87; laser, F(1,20) = 0.20, p= 0.66;

interaction, F(1,20) = 0.00, p= 0.98). A summary of the

time spent performing each social and non-social

behavior is shown in Fig. 2F, and the corresponding

mean ± SEM can be found in Table 1. Thus,

photoactivation of the BLA-mPFC pathway reduced

social behavior without altering stereotypical self-

grooming behavior or nonspecific freezing responses.

Stimulation of BLA terminals within the mPFC
increased cfos expression in the mPFC, without
increasing cfos expression in BLA somata

We quantified the expression of the immediate early gene

cfos as a readout of neural activity to explore the

possibility of confounds produced by activation of BLA

somata with our photostimulation procedure of BLA

terminals within the mPFC. Activation of BLA somata in

this case is possible through either back-propagating

action potentials due to antidromic activation of BLA
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation
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axons or orthodromic activation of BLA somata via

descending mPFC projections (Gabbott et al., 2005;

Likhtik et al., 2005).

Fig. 3A shows confocal images of the BLA taken at

40� from representative ChR2 and eYFP mice that
of anxiety-related and social behaviors by amygdala projections to the
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Table 1. Distribution for each behavioral subcategory during activation of BLA – mPFC projecting neurons corresponding to Fig. 2F. Means and

±SEMs for time spent (s) for each of the subcategories are quantified for our summed social behavior score (A-G sniffing, Body sniffing and Contact)

and exploratory behavior score (Walking/cage sniffing, Digging, and Rearing). In addition, means and ±SEMs for time spent (s) Freezing and Self-

grooming are also shown. Each column represents either opsin-expressing (ChR2 n = 12) or fluorophore-only (eYFP n = 10) groups, during either ON

or OFF epochs. Each row represents each behavioral sub-category

ChR2-ON eYFP-ON ChR2-OFF eYFP-OFF

Mean ±SEM Mean ±SEM Mean ±SEM Mean ±SEM

A–G sniffing 2.39 0.67 17.15 4.71 10.44 3.32 19.6 5.77

Body sniffing 3.54 0.74 14.78 4.13 21.97 4.69 13.22 3.57

Contact 1.49 0.47 4.35 0.99 1.15 0.26 5.71 2.36

Chasing 0.65 0.29 3.11 1.18 3.79 1.45 0.96 0.48

Walking/cage sniffing 156.29 2.02 117.44 7.74 116.71 7.17 125.36 8.36

Digging 3.06 0.29 6.63 1.34 4.55 1.00 3.54 1.47

Rearing 7.53 1.36 9.2 2.91 13.73 2.81 5.66 1.85

Freezing 3.16 1.06 3.32 1.77 2.55 0.98 2.77 1.35

Self-grooming 1.89 0.73 4.02 1.81 5.11 4.86 3.18 1.78
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were photostimulated �90 min prior to being sacrificed

(ChR2 group n= 9, eYFP group n= 8). Fig. 3B shows

quantification of eYFP-positive (eYFP+) cells (green)

and cfos-positive (cfos+) cells (red) in the BLA, relative

to the total number of cells showing DAPI expression.

No significant differences were detected between the

ChR2 and eYFP-control groups in the proportion of

eYFP + cells (t(15) = 0.57, p= 0.28), suggesting that

any possible differences in cfos expression could not be

attributed to differences in the degree of viral infection.

No detectable difference was observed in the proportion

of cfos + BLA cells between ChR2 and eYFP groups

(Fig. 3B; t(15) = 0.39, p= 0.39). While this cannot rule

out the possibility of back-propagating action potentials

affecting the activity of BLA somata, they are consistent

with the idea that the behavioral effects that we

observed were produced by activation of BLA

projections to the mPFC in the absence of substantial

BLA cell body activation.

We also quantified cfos expression in the mPFC to

examine whether stimulation of BLA terminals was

sufficient to trigger mPFC activity. In order to investigate

the extent of photoactivation, cfos quantification was

done in both mPFC subregions; Prelimbic Cortex (PL)

and Infralimbic Cortex (IL). Fig. 3C and Fig. 3E show

confocal images of PL and IL respectively from

representative ChR2 and eYFP mice that were

sacrificed �90 min after photostimulation of BLA

terminals. Fig. 3D and Fig. 3F show the quantification of

eYFP+(green) and cfos+(red) cells within the PL and

IL, respectively. As expected, eYFP + cell bodies within

the PL and IL were nearly undetectable in both the

ChR2 and eYFP-control groups, as the viruses we used

are anterograde and were delivered into the BLA. The

ChR2 group however showed significantly higher

expression of cfos + cells in both PL and IL than the

eYFP-control group (PL, t(15) = 3.03, p= 0.0042; IL

t(15) = 3.60, p= 0.0014). This indicates that

photostimulation of BLA inputs was sufficient to induce

postsynaptic activation of both subregions within the

mPFC neurons. We show our histologically verified

placements in Fig. 4. These results, however, do not

rule out the possibility of photostimulation of fibers of
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation
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passage through the mPFC to elsewhere in the frontal

cortex.
Inhibition of BLA projections to the mPFC produced
anxiolytic effects

Although our findings thus far indicate that

photoactivation of BLA inputs to the mPFC induces

anxiety-like behavior, it remained to be determined

whether or not photoinhibition of this pathway reduces

anxiety. To examine this possibility, we transduced the

BLA bilaterally with NpHR-eYFP or the eYFP control,

and optical fibers were bilaterally positioned over the

mPFC to allow for photoinhibition with yellow light

(Fig. 5A; yellow light was constant at 5 mW). We

bilaterally photoinhibited the BLA-mPFC projection to

prevent hemispheric compensation. Confocal images in

Fig. 5A show BLA somata, and terminals within the

mPFC, expressing NpHR-eYFP (NpHR group n= 10,

eYFP group n= 9).

Next, we also tested the effect of photoinhibiting the

BLA-mPFC projection in the OFT. Fig. 5B shows

representative OFT tracks of an NpHR-mouse during a

laser-OFF and laser-ON epoch. This representative

animal spent more time in the center zone during the

ON epoch, indicating a reduction in anxiety. Fig. 5C

shows quantification of the average time that NpHR and

eYFP mice spent exploring the center zone during the

OFF and ON epochs. A two-way ANOVA did not detect

significant effects for group condition (F(1,17) = 2.01,

p= 0.17) nor laser treatment alone (F(1,17) = 3.05,

p= 0.099), but detected a significant interaction

between the two (F(1,17) = 5.08, p= 0.038). Post hoc

tests revealed that NpHR-mice spent significantly more

time in the center zone than eYFP-mice during the

laser-ON epoch (p= 0.045, Bonferroni corrected).

Interestingly, there was a trend for NpHR-mice to

continue exploring the center zone more than eYFP-

mice after the laser was turned OFF (see inset in

Fig. 5C; p= 0.099, Bonferroni corrected).

Photoinhibition of the BLA-mPFC pathway did not alter

the total distance that mice traveled in the OFT

(Fig. 5D; group, F(1,17) = 0.09, p= 0.77; treatment,
of anxiety-related and social behaviors by amygdala projections to the
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Fig. 3. Activation of BLA inputs was sufficient to activate mPFC neurons. Mice underwent a 3 min photostimulation session in their homecage

�90 min prior to being sacrificed. Immunoreactivity to cfos was used as a proxy for neuronal activity. (ChR2 group n= 9, eYFP group n= 8). (A)

40� confocal images of the BLA from representative ChR2 and eYFP mice (blue: DAPI + cells, green: eYFP+ cells, red: cfos + cells). (B)

Percentage of eYFP+ and cfos + cells in the BLA, relative to the total DAPI + cell counts. No significant differences were detected between the

ChR2 and eYFP-control groups. (C) 40� images of PL sub-regions of the mPFC. (D) Percentage of eYFP+ and cfos + cells in the PL sub-region

of the mPFC, relative to DAPI counts. (E) 40� images of IL sub-regions of the mPFC. (F) Percentage of eYFP+ and cfos + cells in the IL sub-

region of the mPFC, relative to DAPI counts. As expected, almost no mPFC cells were eYFP+. The proportion of cfos + mPFC (Both PL and IL)

cells was significantly higher in the ChR2 group than the eYFP-control group, suggesting that photostimulation of BLA inputs facilitate mPFC
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F(1,17) = 0.00, p= 1.00; interaction, F(1,17) = 1.85,

p= 0.19). These findings indicate that photoinhibition of

the BLA-mPFC pathway reduces anxiety-like behavior.
Inhibition of BLA projections to the mPFC facilitated
social interaction

While photoactivation of the BLA-mPFC pathway reduced

social behavior, we wanted to explore whether

photoinhibiting this pathway facilitates social interaction

(NpHR group n= 11, eYFP group n= 12). The NpHR

and eYFP groups were submitted to the resident-

juvenile intruder paradigm, as represented in Fig. 5E.

Photoinhibition of the BLA-mPFC pathway significantly

increased the time that NpHR-mice spent engaging in
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation

medial prefrontal cortex. Neuroscience (2015), http://dx.doi.org/10.1016/j.neuro
social behaviors (Fig. 5F). A two-way ANOVA showed a

trend toward significance for the group condition

(F(1,21) = 3.49, p= 0.076), no significance for laser

treatment (F(1,21) = 0.77, p= 0.39), and a significant

interaction between the two (F(1,21) = 5.26, p= 0.032).

Post hoc tests confirmed that the mean time spent

engaging in social interaction during the light-ON epoch

was significantly higher for the NpHR group when

compared to the eYFP group (p= 0.045, Bonferroni

corrected). However, the difference between the light-

OFF and light-ON epochs within the NpHR group did

not reach statistical significance after correcting for

multiple comparisons (p= 0.13).

No significant effects were observed in stereotypical

self-grooming behavior (Fig. 5G; group, F(1,21) = 2.02,
of anxiety-related and social behaviors by amygdala projections to the
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p= 0.17; laser, F(1,21) = 0.03, p= 0.86; interaction,

F(1,21) = 0.13, p= 0.72). In addition, while NpHR-mice

displayed a slight reduction in homecage exploration

time during the laser-ON session, this reduction did not

reach significance (Fig. 5H; group, F(1,21) = 1.24,

p= 0.28; laser, F(1,21) = 0.76, p= 0.39; interaction,

F(1,21) = 6.72 p= 0.017; laser-ON versus laser-OFF:

corrected p= 0.40; NpHR versus eYFP during the

laser-ON session: corrected p= 0.098). This slight

reduction in homecage exploration time could be

attributed to the significant increase in social behavior.

No significant differences were detected in freezing

behavior (Fig. 5I; group, F(1,21) = 0.16 p= 0.69; laser,

F(1,21) = 0.06, p= 0.81; interaction, F(1,21) = 0.74,

p= 0.40). Fig. 5J shows a summary of the proportion

of all social and non-social behaviors that were

measured during this NpHR experiment, and the
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation

medial prefrontal cortex. Neuroscience (2015), http://dx.doi.org/10.1016/j.neuro
corresponding mean ± SEM can be found in Table 2.

Taken together, inhibition of the BLA-mPFC pathway

reduces anxiety-related behavior and facilitates social

interaction. The location of viral infusion and placement

of optical fibers for each animal tested are shown in Fig. 6.
DISCUSSION

The present results demonstrate a causal role for BLA

projections to the mPFC in the modulation of anxiety-

related and social behaviors. We found that activating

the BLA-mPFC projection increases anxiety-like

behavior and reduces social interaction, whereas

inhibiting this pathway reduces anxiety-like behavior and

increases social behavior. Such bidirectional modulation

suggests that the BLA-mPFC pathway is implicated in

the regulation of the behavioral manifestations of

anxiety and sociability.

The functional role of the mPFC in anxiety-related

behaviors has been debated (Shah and Treit, 2003).

Some studies have reported anxiogenic effects of phar-

macological inactivation of the mPFC, for example in

the EPM test (Lisboa et al., 2010; De Visser et al.,

2011). This suggests that the mPFC generates neural sig-

nals that normally dampen anxiety-like behavior.

However, other studies have reported anxiolytic effects

of mPFC inactivation, for example in the Vogel anxiety

test (Resstel et al., 2008; Lisboa et al., 2010), suggesting

that the mPFC is also capable of producing neural signals

that increase anxiety-like behavior. It has been argued

that such discrepancy is due to differential roles of the

mPFC in different anxiety tasks. An expansion of this

notion is that distinct sets of inputs to the mPFC are

recruited during different anxiety tasks, and likely each

input exerts a specific functional role. Our present findings

indicate that BLA inputs to the mPFC exert anxiogenic

signals in the EPM and OFT anxiety paradigms.

One caveat of our study was that our optogenetic

approach did not discriminate between BLA projections

to the PL and IL subregions of the mPFC. Growing

evidence indicates opposing functional roles for PL and

IL in aversive behaviors, such as conditioned fear

(Burgos-Robles et al., 2009; Sierra-Mercado et al.,

2011; Bravo-Rivera et al., 2014; Courtin et al., 2014;

Do-Monte et al., 2015), and conditioned active avoidance

(Bravo-Rivera et al., 2014; Beck et al., 2014). While PL

activity facilitates the expression of conditioned fear and

avoidance, IL activity facilitates the extinction and sup-

pression of these behaviors. In addition, it was recently

shown that populations of BLA neurons that differentially

project to PL and IL respectively encode fear conditioning

and fear extinction (Senn et al., 2014). Functional differ-

ences between PL and IL have also been observed in

stress-evoked autonomic responses (Tavares et al.,

2009), goal-directed versus habitual appetitive behavior

(Balleine and O’Doherty, 2010), as well as for drug-

seeking behavior (Peters et al., 2009). Thus, future stud-

ies using viral strategies to discretely express opsins in

the BLA-PL and BLA-IL pathways could shed light onto

possible distinct functional roles of these amygdala-

prefrontal pathways in anxiety-related and social
of anxiety-related and social behaviors by amygdala projections to the
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Table 2. Distribution for each behavioral subcategory during inhibition of BLA – mPFC projecting neurons corresponding to Fig. 5J. Means and ±SEMs

for time spent (s) for each of the subcategories used for our summed social behavior score (A-G sniffing, Body sniffing and Contact) and exploratory

behavior score (Walking/cage sniffing, Digging, and Rearing). In addition, means and ±SEMs for time spent (s) Freezing and Self-grooming are also

shown. Each column represents either opsin-expressing (NpHR n= 11) or fluorophore-only (eYFP n = 12) groups, during either ON or OFF epochs.

Each row represents each behavioral subcategory

NpHR-ON eYFP-ON NpHR-OFF eYFP-OFF

Mean ±SEM Mean ±SEM Mean ±SEM Mean ±SEM

A–G sniffing 26.88 4.87 15.69 2.46 20.16 2.99 20.14 3.20

Body sniffing 13.26 2.99 6.71 1.32 7.21 1.42 8.06 1.71

Contact 0.41 0.10 0.91 0.20 0.63 0.21 0.48 0.24

Chasing 1.53 1.12 0.29 0.27 0.55 0.31 0.98 0.41

Walking/cage sniffing 110.81 7.02 127.65 5.11 126.18 5.17 126.20 5.08

Digging 10.69 4.39 11.72 6.18 8.74 4.31 6.02 2.23

Rearing 8.75 2.34 9.50 2.17 9.61 2.43 9.97 1.95

Freezing 5.85 1.38 4.74 1.33 5.59 1.59 5.21 1.34

Self-grooming 1.81 0.78 2.79 1.033 1.33 0.59 2.95 1.19
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behaviors. Nevertheless, PL-IL differences have not been

observed in previous studies using pharmacological-

mediated inactivation (Resstel et al., 2008; Van Kerkhof

et al., 2013).

Although the present findings are consistent with a

functional role of the BLA-mPFC pathway in the

modulation of anxiety- and social-related behaviors,
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation

medial prefrontal cortex. Neuroscience (2015), http://dx.doi.org/10.1016/j.neuro
there is the possibility of confounds produced by effects

on fibers of passage. Given our approach, it is possible

that we also targeted BLA fibers passing through the

mPFC but terminating in other regions. For example,

the BLA also projects to the anterior cingulate cortex

(ACC) and orbitofrontal cortex (OFC), which are

adjacent to the mPFC and are suspected to also play
of anxiety-related and social behaviors by amygdala projections to the

science.2015.07.041

http://dx.doi.org/10.1016/j.neuroscience.2015.07.041


A. C. Felix-Ortiz et al. / Neuroscience xxx (2015) xxx–xxx 11
roles in anxiety-related and social behaviors (Albrechet-

Souza et al., 2009; Achterberg et al., 2015). However,

the present finding that our optogenetic ChR2-mediated

manipulations produced a significant increase in cfos

expression in the mPFC suggests that we reliably trig-

gered postsynaptic activity in the mPFC, and that the

behavioral effects we observed were associated, at least

in part, by BLA activation of the mPFC. Nevertheless,

projection-specific optogenetic strategies or occlusion of

the effects we observed by pharmacological inactivation

of the mPFC prior to CaMKIIa-ChR2 mediated photostim-

ulation could clarify this issue. In addition, future ex vivo
whole-cell patch-clamp recording experiments in the

mPFC of mice expressing ChR2 in BLA inputs could fur-

ther elucidate the local circuit mechanism in the mPFC

that contribute to the effects we observed in anxiety and

social behaviors (as in Felix-Ortiz et al., 2013).

A noteworthy observation in the present study was

that inhibition of BLA projections to the mPFC produced

a persistent anxiolytic effect that outlasted the

photoinhibition epoch (Fig. 5C, inset). One possible

explanation for this effect is that bilateral photoinhibition

may have produced an altered experience of the open-

field (e.g., perception of the center of the apparatus as

a ‘‘safe’’ zone) that resulted in plasticity sufficient to

maintain lower anxiety levels beyond the photoinhibition

epoch. Another possible explanation is that

photoinhibition of the BLA input to the mPFC may have

produced downstream changes in neuromodulation that

persisted for several minutes beyond the illumination

epoch. Further experiments would be necessary to

determine which of these represent the underlying

mechanism of this persistent anxiolytic effect.

Along with the mPFC, we have recently mapped with

optogenetics the functional role of other projections of the

BLA on the modulation of anxiety-related and social

behaviors (Allsop et al., 2014; Janak and Tye, 2015).

We have observed anxiolytic effects with activation of

BLA projections to the CeA, and anxiogenic effects with

inhibition of this pathway (Tye et al., 2011). In that study,

BLA-CeA activation produced excitation in the centrolat-

eral (CeL) subdivision of CeA, which in turn produced

feed-forward inhibition onto the centromedial (CeM) sub-

division, which regulates somatic and autonomic manifes-

tations of anxiety through projections to the bed nucleus

of the stria terminalis, hypothalamus and brainstem

(LeDoux, 2000; deCampo and Fudge, 2013).

Another BLA output that we have recently examined is

the vHPC. While photoactivation of the BLA-vHPC

pathway produced anxiogenic effects, photoinhibition

produced anxiolytic effects (Felix-Ortiz et al., 2013).

Interestingly, we also observed in our previous study that

activation of the BLA-vHPC pathway triggered an

increase in cfos expression in the mPFC. Given the

strong physiological modulation that vHPC monosynaptic

projections exert onto the mPFC (Thierry et al., 2000;

Tierney et al., 2004), it is thus possible that vHPC-

mPFC interactions also play a strong functional role in

the modulation of anxiety-like behaviors (Adhikari et al.,

2010). In fact, populations of mPFC neurons that show

the strongest task-related firing during EPM testing are
Please cite this article in press as: Felix-Ortiz AC et al. Bidirectional modulation

medial prefrontal cortex. Neuroscience (2015), http://dx.doi.org/10.1016/j.neuro
strongly coupled to theta oscillations in the vHPC

(Adhikari et al., 2011). However, it remains to be eluci-

dated what is the net effect that photoactivation or pho-

toinhibition of the vHPC-mPFC pathway has over

anxiety-related behaviors. We have also determined that

the BLA-vHPC pathway bidirectionally regulates social

behaviors, with BLA-vHPC activation decreasing social

interaction and inhibition increasing social interaction

(Felix-Ortiz and Tye, 2014). Therefore, we have made

significant progress using optogenetics in the mapping

of BLA-mediated circuit mechanisms underlying the

dynamic modulation of anxiety-related and social

behaviors.

CONCLUSION

While anxiety-related and social behaviors play a crucial

evolutionary role in adaptation to ever-changing

environmental and social conditions, it is reasonable

that essential neural circuits controlling anxiety and

social behaviors are redundant and widely distributed

across subcortical and cortical areas. Our previous

studies illustrated vital roles for BLA projections to CeA

and vHPC in the regulation of these adaptive behaviors.

To further expand our understanding of how the BLA

regulates anxiety and social behaviors, the present

study represents the importance of BLA projections to

the mPFC in the bidirectional modulation of these

behaviors.
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