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SUMMARY

The cellular mechanisms underlying pathological
alcohol seeking remain poorly understood. Here,
we show an enhancement of nucleus accumbens
(NAcb) core action potential firing ex vivo after pro-
tracted abstinence from alcohol but not sucrose
self-administration. Increased firing is associated
with reduced small-conductance calcium-activated
potassium channel (SK) currents and decreased
SK3 but not SK2 subunit protein expression. Further-
more, SK activation ex vivo produces greater firing
suppression in NAcb core neurons from alcohol-
versus sucrose-abstinent rats. Accordingly, SK acti-
vation in the NAcb core significantly reduces alcohol
but not sucrose seeking after abstinence. In contrast,
NAcb shell and lateral dorsal striatal firing ex vivo are
not altered after abstinence from alcohol, and SK
activation in these regions has little effect on alcohol
seeking. Thus, decreased NAcb core SK currents
and increased excitability represents a critical mech-
anism that facilitates motivation to seek alcohol after
abstinence.

INTRODUCTION

Addiction is a chronic disorder characterized by periods of

heightened motivation to seek drugs and an increased propen-

sity for relapse (Larimer et al., 1999; Sanchis-Segura and Spana-

gel, 2006). Thus, there is considerable interest in rodent para-

digms that model key aspects of human addiction, since these

paradigms help elucidate the molecular and cellular mecha-

nisms that drive drug-seeking behaviors, and as a consequence

facilitate the development of novel therapeutic interventions for

addiction. There is general agreement that drug-related stimuli

can be potent triggers for eliciting relapse in humans and rodents

(Epstein et al., 2006; Everitt and Robbins, 2005; Sanchis-Segura

and Spanagel, 2006). A number of studies have examined the
682 Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc.
ability of different stimuli to reinstate drug seeking after extinc-

tion (Kalivas and McFarland, 2003; Sanchis-Segura and Spana-

gel, 2006). Other models examine drug seeking after abstinence

from self-administration, since human addicts may not undergo

explicit extinction of drug-related stimuli and behaviors (Epstein

et al., 2006; Sanchis-Segura and Spanagel, 2006). In particular,

drug-related motivation can increase across abstinence, which

has been described as an incubation of craving in studies of

cocaine and heroin seeking (Epstein et al., 2006), and as an

alcohol-deprivation effect, an increase in alcohol intake after

abstinence that has been observed in humans (Sanchis-Segura

and Spanagel, 2006). Drug-related cues can play an important

role in the increased motivation after protracted abstinence for

both cocaine and alcohol (Bowers et al., 2008; Epstein et al.,

2006).

The nucleus accumbens (NAcb) core is considered critical for

allowing a variety of salient stimuli to drive motivated behaviors

(Cardinal et al., 2002; Carelli and Wightman, 2004; Epstein

et al., 2006; Everitt and Robbins, 2005; Kalivas and McFarland,

2003; Kelley, 2004; Mogenson et al., 1980). NAcb core neurons

in rats and nonhuman primates exhibit firing in response to rein-

forcer-predictive cues (Carelli and Wightman, 2004; Nicola,

2007; Schultz, 2004), and the NAcb is activated by drug-related

stimuli in alcoholics (Kareken et al., 2004; Modell and Mountz,

1995; but see Schneider et al., 2001). In addition, NAcb core

inactivation can attenuate behavioral responding to cues that

predict positive reinforcement (Cardinal et al., 2002; Epstein

et al., 2006; Kalivas and McFarland, 2003; Nicola, 2007;

Sanchis-Segura and Spanagel, 2006). Since action potential

(AP) firing is the predominant mechanism by which neurons

transmit information, cue-related NAcb core firing is thought to

contribute to the activation of motivated, goal-directed behavior

(Carelli and Wightman, 2004; Nicola, 2007). We should note that

other regions of the striatum have also been implicated in control

of motivated and drug-related behaviors. The lateral dorsal stria-

tum (DStr) is important in well-learned, habitual behavior, while

the NAcb shell has been linked to a range of behaviors, including

primary reward, reinstatement/relapse induced by drug expo-

sure and some types of drug-related cues, as well as some forms

of conditioned phenomena, such as Pavlovian-to-instrumental

transfer (Cardinal et al., 2002; Everitt and Robbins, 2005).
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Figure 1. NAcb Core Spike Firing Was Significantly Enhanced after Abstinence from Alcohol Ex Vivo

(A) Animals were allowed to operantly self-administer alcohol (10%) or sucrose (10% or 2%) across 42–50 continuous days on a fixed-ratio 3 schedule (FR-3,

30 min/day) or were age-matched naive controls. For self-administering animals, ex vivo electrophysiology or behavioral responding for alcohol or sucrose

was examined after 3–5 weeks abstinence.

(B) Example traces of AP generation evoked in response to depolarizing current steps in NAcb neurons from naive animals or from animals after abstinence from

self-administration of sucrose or alcohol.

(C) Example input/output relationships (I/O slope) derived from the alcohol and 10% sucrose traces in (B).

(D) Grouped data showing enhanced spike firing in NAcb core neurons from alcohol- relative to sucrose-abstinent and naive animals.

(E and F) Example traces showing no changes in firing in (E) NAcb shell or (F) lateral DStr neurons after alcohol and abstinence. Error bars indicate SEM. sucr.,

sucrose; e-phys., electrophysiology; progr., progressive. **p < 0.01 alcohol versus sucrose or naive.

See also Figure S1.
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Reduced NAcb Core SK Facilitates Alcohol Seeking
Although molecular neuroadaptations in the NAcb or lateral

DStr could potently enhance drug seeking, it is unknown whether

alterations in firing in these regions could develop or persist

following alcohol intake and thus could facilitate the motivation

to seek alcohol that is thought to promote relapse. In this study,

we link molecular changes in potassium channel function to

enhancement of drug-seeking behavior, identifying a mechanism

whereby reduced small-conductance, calcium-activated potas-

sium channel (SK) currents in the rat NAcb core is a critical

neuroadaptation that enhances firing ex vivo and facilitates

motivation to seek alcohol following protracted abstinence.

RESULTS

NAcb Core AP Firing Was Enhanced after Alcohol
Self-Administration and Abstinence
We performed ex vivo whole-cell patch-clamp recording using

adult rat brain slices to examine whether NAcb core AP firing

was altered after 3–5 weeks abstinence from 42–50 continuous

days of operant self-administration of 10% alcohol (Figure 1A

and Table 1). Animals at this time of abstinence exhibit enhanced

motivation for alcohol relative to animals without abstinence
(Bowers et al., 2008). Results were compared with NAcb core

neurons from animals after abstinence from self-administration

of 10% sucrose, an equivalent concentration of reinforcer as

alcohol but with higher operant responding than for alcohol

(t(170) = 19.83, p < 0.001, unpaired t test) or after abstinence

from self-administration of 2% sucrose, which elicited similar

levels of operant responding during self-administration as

observed in alcohol-abstinent animals (t(145) = 0.040, p = 0.968,

unpaired t test) (Figure 1A and Table 1). Electrophysiological

experiments were performed in current-clamp mode, where

depolarizing current pulses (300 ms, both sub- and suprathres-

hold for firing) were applied to elicit AP firing (Figure 1B). The

resting membrane potential in each neuron was set to �–90 mV

before analysis of firing. Also, because a different number of

neurons was recorded for each animal, basal spike firing and

voltage-clamp parameters were averaged for all cells obtained

from a given animal, thus obtaining a single value of each param-

eter for each individual animal.

AP firing was significantly enhanced in NAcb core neurons

after abstinence from alcohol but not sucrose self-administration

(Figure 1B). To quantify spike firing, the number of APs generated

in response to a range of depolarizing current pulses was
Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc. 683



Table 1. Lever Pressing and Reinforcer Intake across the Last

10 Days of Self-Administration before the Beginning of Abstinence

Active Lever

Presses

Inactive Lever

Presses g/kg Reinforcer

10% Alcohol 115.1 ± 7.1 10.1 ± 0.9 0.42 ± 0.02

10% Sucrose 426.2 ± 16.6 9.0 ± 0.9 2.12 ± 0.09

2% Sucrose 114.5 ± 12.5 9.0 ± 0.9 0.12 ± 0.01

Active and inactive lever presses and g/kg of reinforcer (in the 30 min

operant session) averaged across the last 10 days of self-administration

before abstinence. These data include animals from ex vivo electrophys-

iology experiments and in vivo behavioral experiments.
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determined in order to describe the input/output relationship.

This ‘‘input/output slope’’ (I/O slope) was calculated from the

number of spikes generated in the last subthreshold current

pulse and the first three suprathreshold current pulses from a

given neuron (Figure 1C). NAcb core neurons from alcohol-absti-

nent animals exhibited a significantly larger basal input/output

slope than neurons from naive or sucrose-abstinent animals

(Figure 1D, naive: n = 14, 0.59 ± 0.03 AP/10 pA; 10% sucrose:

n = 20, 0.62 ± 0.02 AP/10 pA; 2% sucrose: n = 14, 0.61 ± 0.03

AP/10 pA; alcohol: n = 21, 0.76 ± 0.03 AP/10 pA; F(3,65) =

7.946, p < 0.001, one-way ANOVA; p < 0.01 alcohol versus

each other group), suggesting that basal excitability in the

NAcb core was enhanced after abstinence from alcohol self-

administration. In contrast, there was no change in firing after

alcohol and abstinence in neurons from the NAcb shell or lateral

DStr (Figures 1E, 1F, and S1; NAcb shell: F(3,30) = 0.842, p =

0.481; lateral DStr: F(3,17) = 0.712, p = 0.558; both one-way

ANOVA). Thus, alcohol self-administration and protracted absti-

nence only altered AP firing in the NAcb core, with no change in

AP firing in NAcb shell or lateral DStr neurons.

SK Inhibition Differentially Enhanced Firing
in NAcb Core Neurons from Alcohol-
and Sucrose-Abstinent Animals
Many ion channels can contribute to firing by regulating the after-

hyperpolarization (AHP), the refractory period that occurs before

a subsequent AP can be generated. SK-type potassium chan-

nels are potent regulators of AP firing, since they can enhance

the AHP and depress AP firing, while SK inhibition facilitates

AP firing (Bennett et al., 2000; Hille, 2001; Pineda et al., 1992).

Basal SK function is greater in the lateral DStr (Figure S1; Pineda

et al., 1992) and weaker in the NAcb shell (Ishikawa et al., 2009),

but the contribution of SK to NAcb core firing remains unknown.

Here, we first examined SK function in the NAcb core by deter-

mining whether the SK-selective blocker apamin (100 nM) would

alter AP firing. If greater basal AP firing in NAcb core neurons

from alcohol-abstinent animals reflects reduced SK currents,

then apamin should have a smaller effect on firing in neurons

from alcohol- versus sucrose-abstinent animals.

SK inhibition with apamin enhanced NAcb core firing ex vivo in

all groups. However, basal firing was significantly greater in

NAcb core neurons from alcohol-abstinent animals, but there

were no differences in firing among groups after exposure to

apamin (Figures 2A and 2B and Table S1; 10% sucrose: n = 14

from 10 rats; 2% sucrose: n = 9 from 6 rats; alcohol: n = 11
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from 8 rats; apamin: F(1,31) = 261.5, p < 0.001; group: F(2,31) =

3.861, p = 0.032; apamin 3 group: F(2,31) = 6.336, p = 0.005;

two-way repeated-measures ANOVA [RM-ANOVA]; p < 0.05

alcohol versus sucrose before apamin). Thus, SK inhibition

produced a significantly greater enhancement in firing in NAcb

core neurons from sucrose- relative to alcohol-abstinent animals

(Figure 2C and Table S1; F(2,31) = 10.18, p < 0.001, one-way

ANOVA; p < 0.05 alcohol versus sucrose). The similar input/

output slope after apamin exposure across groups suggests

that basal differences in firing reflected differential basal SK

function, in particular a reduction of basal SK currents that

enhanced excitability of neurons from alcohol-abstinent animals.

To further examine SK regulation of firing, we determined the

effect of SK inhibition on the number of APs generated (measured

for each cell at the current step with four APs at baseline, or five

APs if no current step at baseline had four APs). Apamin inhibition

of SK produced a significantly greater increase in AP generation

in NAcb core neurons from sucrose- versus alcohol-abstinent

animals (Figure 2D and Tables S1 and S2; F(2,31) = 5.242, p =

0.011, one-way ANOVA; p < 0.05 alcohol versus sucrose).

Thus, apamin differentially enhanced NAcb core AP generation,

with a smaller effect in neurons from alcohol- versus sucrose-

abstinent animals. Furthermore, the basal input/output slope

for any given neuron was negatively correlated with the change

in input/output slope with apamin in all groups (Figure S2; R2 =

0.363 for 10% sucrose, 0.417 for 2% sucrose, and 0.564 for

alcohol; all p < 0.05 Pearson correlation), suggesting that greater

basal firing may, in general, reflect reduced basal SK currents.

Taken together, these results indicate a critical role for decreased

SK currents in enhancing basal excitability of NAcb core neurons

after abstinence from alcohol self-administration.

In addition to SK regulation of firing, strong SK currents can

also regulate the peak magnitude of the AHP (Bennett et al.,

2000). Here, the basal NAcb core peak AHP magnitude, deter-

mined 3–4 ms after the AP threshold, was not different across

groups (Table S3). Further, apamin did not significantly alter the

peak AHP magnitude in any group (Table S1, apamin: F(1,31) =

0.311, p = 0.581; group: F(2,31) = 1.102, p = 0.345; apamin 3

group: F(2,31) = 0.627, p = 0.541; two-way RM-ANOVA), sug-

gesting that SK currents in NAcb core neurons were relatively

moderate compared to some other types of neurons (Bennett

et al., 2000). In addition, no changes were observed in many

other AP waveform parameters, perhaps indicating that several

channels other than SK did not show functional changes after

alcohol and abstinence (Table S3). However, the magnitude of

the slower component of the AHP, determined relative to the

AP threshold at 15 ms after the AP threshold (Figure 2E), was

significantly reduced in NAcb core neurons from alcohol- versus

sucrose-abstinent animals at baseline (Figures 2E and 2F and

Table S1; F(2,31) = 5.415, p < 0.001, one-way ANOVA; p < 0.01

alcohol versus sucrose). Furthermore, the apamin reduction of

this delayed AHP component was significantly smaller in NAcb

core neurons from alcohol-abstinent animals (Figures 2E and

2G and Tables S1 and S2; F(2,31) = 5.415, p = 0.010, one-way

ANOVA, p < 0.05 alcohol versus sucrose). Thus, reduced NAcb

core SK regulation of firing contributes significantly to the

enhanced spike firing observed after long-term self-administra-

tion and protracted abstinence from alcohol but not sucrose.
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Figure 2. Reduced NAcb Core SK Regulation of Firing Enhanced Firing Ex Vivo after Alcohol and Abstinence

Examples (A) and grouped data (B–D) illustrating that SK inhibition produced a greater enhancement of firing in neurons from sucrose- versus alcohol-abstinent

animals. Baseline example traces in (A) are the same as those in Figure 1B.

(C and D) The apamin-induced increases in (C) the input/output slope and (D) AP generation were significantly greater in neurons from sucrose- versus alcohol-

abstinent animals.

(E and F) Examples ([E], magnification of the AHP for examples in [A]) and grouped data (F) showing that the amplitude of the AHP, determined relative to the

AP threshold at 15 ms after the AP threshold (open arrow), was significantly reduced in neurons from alcohol- versus sucrose-abstinent animals.

(G) The apamin reduction in the AHP amplitude was significantly smaller in neurons from alcohol-abstinent animals.

In (B)–(D), the average input/output slope or APs generated was determined by averaging three sweeps just before addition of apamin and three sweeps 8–10 min

after addition of apamin. Error bars indicate SEM. sucr., sucrose. *p < 0.05 or **p < 0.01 alcohol versus sucrose. See also Figure S2 and Tables S1 and S2.
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We should note that increased NAcb core firing ex vivo was

observed in nearly all alcohol-abstinent rats independent from

the amount of alcohol previously consumed during the last

10 days of self-administration before abstinence (Figure S2;

R2 = 0.006, p = 0.762, Pearson correlation). This suggests that,

although each rat may have its own set-point for the preferred

amount of alcohol consumed during self-administration,

decreased SK regulation of firing occurred independently of

alcohol intake levels.
NAcb Core SK Currents Were Reduced after Alcohol
and Abstinence
To directly examine NAcb core SK function after abstinence from

either alcohol or sucrose self-administration, we used voltage-

clamp methods to isolate SK currents (Hille, 2001; Hopf et al.,

2007; Paul et al., 2003). Neurons were held at –70 mV, then

depolarized for 400 ms to steps ranging from –40 to –10 mV

(with 10 mV between steps) prior to being brought back to

–70 mV. A tail current was evident upon returning to –70 mV
Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc. 685
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Figure 3. Alcohol and Abstinence Significantly Reduced SK Currents in NAcb Core Neurons Measured under Voltage Clamp

(A) Example of an entire current response upon depolarization to –20 mV from a –70 mV holding potential, with a tail current apparent after returning to –70 mV

following the depolarization; (A’) example tail currents magnified.

(B) Grouped data showing that peak tail currents, determined for the step to –20 mV, were significantly reduced in NAcb core neurons from alcohol- versus

sucrose-abstinent animals and were almost abolished by apamin.

(C and D) (C) Peak tail currents and (D) area under the curve (the tail current charge transfer) were significantly reduced in neurons from alcohol- versus sucrose-

abstinent and naive animals.

(E) Tail current t of inactivation, fit from 55 to 550 ms of the tail current (Abel et al., 2004), was not different across groups.

(F and F0) Reduced NAcb core SK3 subunit protein expression in alcohol relative to naive animals (naive: 100% ± 6.7% optical density, O.D., of naive; alcohol:

72.0% ± 6.0% O.D. of naive).

(G and G0) No change in NAcb core SK2 subunit protein expression with alcohol (naive: 100% ± 2.6% O.D. of naive; alcohol: 94.1% ± 2.3% O.D. of naive).

The protein calnexin was used as a procedural control (Bowers et al., 2004, 2008). Apparent molecular weights: open triangle, �70 kD; closed triangle: �90 kD.

Error bars indicate SEM. sucr., sucrose; pC, picocoulombs. *p < 0.05 or **p < 0.01 alcohol versus naive and sucrose, &p < 0.001 inhibition by apamin.

See also Figure S3 and Table S1.
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(Figures 3A and 3A0), which may reflect slow ion channel deacti-

vation (Hille, 2001). Analyses of apamin-sensitive peak currents

and the t of inactivation was determined for the step to –20 mV

because of occasional apamin-insensitive, rapidly activating and

inactivating currents at steps to –10 mV, which likely represent

currents through the large-conductance calcium-activated

potassium channel (BK; Sah and Faber, 2002).

Peak tail currents were significantly smaller in NAcb core

neurons from alcohol- versus sucrose-abstinent animals, and

SK inhibition with apamin nearly eliminated the tail current in all
686 Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc.
three groups (Figures 3A and 3B and Table S1; 10% sucrose:

n = 12 from 9 rats; 2% sucrose: n = 6 from 5 rats; alcohol: n = 10

from 7 rats; apamin: F(1,25) = 246.4, p < 0.001; group: F(2,25) =

3.615, p = 0.042; apamin 3 group: F(2,25) = 5.286, p = 0.012;

two-way RM-ANOVA; p < 0.05 alcohol versus sucrose before

apamin), suggesting that the peak tail current predominantly

reflected SK-mediated currents (Hopf et al., 2007; Paul et al.,

2003). Reduced basal tail currents in neurons from alcohol-

versus sucrose-abstinent and naive animals were also evident

in a larger group of cells, including those not tested with apamin
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Figure 4. SK Activators Differentially Reduced NAcb Core Firing Ex

Vivo in Neurons from Alcohol- and Sucrose-Abstinent Animals

Example traces (A) and grouped data (B) illustrating that the SK positive

modulator 1-EBIO (300 mM) reduced NAcb core firing ex vivo, with a greater

effect in NAcb core neurons from alcohol- versus sucrose-abstinent animals.

Moreover, apamin fully reversed the effect of 300 mM 1-EBIO, indicating that

1-EBIO depressed firing through SK activation. The current steps in (A) were

160 pA, 160 pA, and 200 pA for the 10% sucrose, 2% sucrose, and alcohol

examples, respectively. Error bars indicate SEM. sucr., sucrose. **p < 0.01

alcohol versus sucrose. See also Tables S1 and S2.
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(Figure 3C; n = 9 for naive, 17 for 10% sucrose, 14 for 2%

sucrose, and 17 for alcohol; voltage step: F(3,206) = 246.8, p <

0.001; group: F(3,206) = 4.289, p = 0.009; voltage step 3 group:

F(9,206) = 3.240, p = 0.001; two-way RM-ANOVA; p < 0.05 alcohol

versus other groups at –20 and –10 mV steps). The tail current

charge transfer, calculated by integrating the tail current evoked

following the depolarizing pulse (from �55 to 550 ms into the tail

current; Abel et al., 2004), was also significantly reduced in

neurons from alcohol- versus sucrose-abstinent and naive

animals (Figure 3D; voltage step: F(3,206) = 336.8, p < 0.001;

group: F(3,206) = 4.806, p = 0.005; voltage step 3 group: F(9,206) =

3.117, p = 0.002; two-way RM-ANOVA; p < 0.05 alcohol versus

other groups at –20 and –10 mV steps). However, the SK tail

current t of inactivation at the –20 mV step was not different

between groups (Figure 3E, naive: 123.8 ± 8.0 ms; 10% sucrose:
112.5 ± 8.0 ms; 2% sucrose: 111.4 ± 12.1 ms; alcohol: 122.7 ±

14.2 ms; F(3,53) = 0.297, p = 0.828, one-way ANOVA), nor were

the tail current decay time, rise time, or the relative proportion

of the SK current activated across the different voltage steps

(Figure S3). Moreover, reduced SK currents did not reflect

changes in basic membrane properties such as series or input

resistance, which were not different across groups (Table S3).

These results demonstrate that NAcb core SK currents were

reduced after protracted abstinence from alcohol self-adminis-

tration. Also, since SK inactivation kinetics were not altered after

alcohol and abstinence, these results suggest that decreased

SK currents could reflect a decrease in SK channel number

rather than a change in SK channel kinetics.

NAcb Core SK3 Subunit Protein Expression
Was Reduced during Abstinence from Alcohol
SK channels can be formed from one or more of three subunits,

with SK3 subunit expression particularly high in the NAcb core

and striatum relative to the SK2 and SK1 subunits (Sailer

et al., 2004; Stocker and Pedarzani, 2000). Here, immunoblot-

ting revealed that SK3 subunit expression was significantly

reduced in the NAcb core of alcohol-abstinent rats relative

to age-matched naive rats (Figure 3F; naive: n = 17; alcohol:

n = 14; t(29) = 3.050, p = 0.005, unpaired t test). In addition, no

changes were observed in NAcb core protein expression of

SK2 subunits (Figure 3G; naive: n = 12; alcohol: n = 12; t(22) =

1.720, p = 0.099, unpaired t test). Thus, abstinence from long-

term alcohol self-administration was associated with enhanced

NAcb core firing (Figure 1), reduced SK regulation of firing

(Figure 2), reduced SK currents under voltage clamp (Figures

3A–3E), and decreased NAcb core SK3 but not SK2 subunit

protein expression (Figures 3F and 3G), suggesting that

decreased SK3 subunit protein expression likely contributed to

decreased SK currents after alcohol self-administration and

abstinence.

SK Activation Differentially Suppressed Firing
in NAcb Core Neurons from Alcohol- versus
Sucrose-Abstinent Animals
Our firing and voltage-clamp results indicate that SK is a potent

and differential regulator of neuronal activity in NAcb core

neurons from alcohol- and sucrose-abstinent animals, since

SK inhibition with apamin produced a smaller increase in firing

in neurons from alcohol-abstinent animals that correlated with

a greater basal input/output slope (Figures 2 and S2). Thus, we

examined whether SK activation with 1-EBIO, which can

enhance SK function by increasing the apparent calcium sensi-

tivity (Pedersen et al., 1999; Walter et al., 2006), and the subse-

quent inhibition of firing might also be altered after alcohol and

abstinence. 100 mM 1-EBIO had no effect on firing (Figure 4

and Tables S1 and S2; 10% sucrose: n = 6 from 5 rats; 2%

sucrose: n = 5 from 4 rats; alcohol: n = 6 from 5 rats; F(2,14) =

2.510, p = 0.117, one-way ANOVA). In contrast, 300 mM 1-EBIO

significantly decreased AP generation in NAcb core neurons,

with a significantly greater depression of firing in neurons from

alcohol- versus sucrose-abstinent animals (Figure 4 and Tables

S1 and S2; 10% sucrose: n = 13 from 9 rats; 2% sucrose: n = 7

from 6 rats; alcohol: n = 8 from 6 rats; F(2,25) = 7.671, p = 0.003,
Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc. 687
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Figure 5. NAcb Core SK Activation Reduced the Motivation to Seek

Alcohol

(A) Intra-NAcb core 1-EBIO microinjection dose-dependently reduced the

motivation expressed to obtain alcohol after abstinence, measured as break-

point under a progressive ratio schedule of reinforcement.

(B and C) The breakpoint obtained for alcohol was not reduced by SK activa-

tion in the (B) NAcb shell or (C) lateral DStr. Intra-NAcb core 1-EBIO also

reduced the g/kg alcohol consumed during the progressive ratio test session

(vehicle: 0.23 ± 0.01 g/kg; low 1-EBIO: 0.20 ± 0.01 g/kg; medium 1-EBIO:

0.17 ± 0.01 g/kg; high 1-EBIO: 0.18 ± 0.1 g/kg; F(3,76) = 5.025, p = 0.003,

one-way ANOVA; p < 0.05 vehicle versus medium and high 1-EBIO).

(D) Breakpoint for alcohol during self-administration without abstinence was

not significantly reduced by 1-EBIO in the NAcb core. Animals were tested

under PR with one dose of 1-EBIO, or two different doses of 1-EBIO, in a coun-

terbalanced manner, with 1 week of home-cage abstinence between sessions,

except in (D), where animals self-administered alcohol each day between PR

sessions. Also, the high 1-EBIO dose (29 mg/ml) was chosen because it was the

highest solubility we could obtain in the 10% DMSO/90% saline vehicle. Error

bars indicate SEM. veh., vehicle; self-admin., self-administration. **p < 0.01

vehicle versus medium and high dose 1-EBIO.

See also Figures S4 and S5 and Table S4.
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one-way ANOVA, p < 0.05 alcohol versus sucrose). In addition,

the 1-EBIO-mediated reduction in firing was strongly reversed

by subsequent application of apamin (Figure 4 and Table S1;

10% sucrose: n = 9 from 7 rats; 2% sucrose: n = 6 from 6 rats;

alcohol: n = 9 from 6 rats; two-way RM-ANOVA across baseline,

1-EBIO, and apamin: drug: F(2,36) = 101.2, p < 0.001; group:

F(2,36) = 4.041, p = 0.036; drug 3 group: F(4,36) = 2.125, p = 0.098;

p < 0.001 apamin versus 1-EBIO), strongly suggesting that

1-EBIO suppressed NAcb core firing through SK activation.

Also, there was a trend toward a significantly smaller apamin

enhancement of firing after alcohol and abstinence (F(2,21) =

3.101, p = 0.066, one-way ANOVA), in agreement with reduced

SK regulation of NAcb core firing in alcohol-abstinent animals.

Taken together, these results suggest that SK activation pro-
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duced a significantly greater inhibition of firing in neurons from

alcohol- versus sucrose-abstinent animals.

SK Activation in the NAcb Core Reduced
the Motivation to Seek Alcohol but Not Sucrose
We hypothesized that the decreased NAcb core SK currents

and increased excitability observed ex vivo would increase

NAcb core responsiveness to alcohol-related stimuli and thereby

facilitate motivation to obtain alcohol. Thus, we examined

operant responding for alcohol or sucrose after abstinence

on a progressive ratio schedule of reinforcement, where the

response requirement for reinforcement increased with each

subsequent reinforcer obtained. The point at which the rat stops

responding, the breakpoint, is considered a quantitative indi-

cator of motivation (Roberts et al., 2007; Sanchis-Segura and

Spanagel, 2006). We utilized 1-EBIO to examine SK modulation

of motivation for reinforcers under progressive ratio since

1-EBIO has previously been used for intracranial infusion to

activate SK channels during behavior (Walter et al., 2006;

Zavala-Tecuapetla et al., 2008).

The breakpoint for alcohol after abstinence was significantly

and dose-dependently reduced by 1-EBIO infusion into the

NAcb core (Figure 5A and Table S4; vehicle: n = 23; low dose

[2.9 mg/ml] 1-EBIO: n = 17; medium dose [9.5 mg/ml] 1-EBIO:

n = 23; high dose [29 mg/ml] 1-EBIO: n = 17; Kruskal-Wallis

statistic = 17.35, p < 0.001; p < 0.01 vehicle versus medium

and high 1-EBIO). In strong contrast, the breakpoint for alcohol

after abstinence was not significantly reduced by 1-EBIO in the

NAcb shell (Figure 5B and Table S4; vehicle: n = 17; medium

1-EBIO: n = 11; high 1-EBIO: n = 6; Kruskal-Wallis statistic =

2.544, p = 0.280) or in the lateral DStr (Figure 5C and Table S4;

vehicle: n = 8; medium 1-EBIO: n = 8; Mann-Whitney U =

16.50, p = 0.105). Lever-pressing for alcohol during the progres-

sive ratio session showed a similar effect of intracranial 1-EBIO

as breakpoint (Figure S4). Thus, only SK activation within the

NAcb core was able to reduce motivation to obtain alcohol after

abstinence.

Our results above suggest that NAcb core SK regulation of

firing ex vivo was reduced after abstinence from alcohol but

not sucrose self-administration, and that activating SK within

the NAcb core significantly reduced the motivation expressed

to obtain alcohol. Thus, we next examined whether intra-NAcb

core 1-EBIO would reduce motivation for an equivalent concen-

tration of a natural reinforcer, a highly sweet 10% sucrose

solution (Avena et al., 2008). The breakpoint for 10% sucrose

after abstinence from operant sucrose self-administration was

not reduced by 1-EBIO in the NAcb core (Figure 6A and Table

S4; vehicle: n = 20; medium 1-EBIO: n = 21; high 1-EBIO:

n = 15; Kruskal-Wallis statistic = 12.14, p = 0.002; p > 0.05

vehicle versus medium or high 1-EBIO). Lever pressing for

10% sucrose during the progressive ratio session also showed

little effect of intracranial 1-EBIO (Figure S4). Thus, intra-NAcb

core 1-EBIO did not reduce motivation for 10% sucrose at

doses that significantly reduced the motivation expressed to

obtain alcohol.

Since the breakpoint achieved for 10% sucrose or 5%

sucrose is higher than that observed for 10% alcohol (Figures

5A and 6A; Bowers et al., 2008), we trained additional animals



A B

Figure 6. Moderate NAcb Core SK Activation Did Not Reduce the

Motivation for Sucrose
(A) Intra-NAcb core 1-EBIO microinjection did not reduce breakpoint for 10%

sucrose, although a trend for reduced breakpoint was observed at the high

1-EBIO dose that reduced motoric activity (Figure S4).

(B) Intra-NAcb core 1-EBIO microinjection did not reduce breakpoint for 2%

sucrose. Error bars indicate SEM. veh., vehicle; sucr., sucrose.

See also Figures S4 and S5 and Table S4.
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to self-administer 2% sucrose. Lever pressing across the last

10 days of self-administration (Table 1) and breakpoint after

abstinence in vehicle-injected animals (Figures 5A and 6B and

Table S4; alcohol: 17.4 ± 1.1 breakpoint, n = 47; 2% sucrose:

n = 14) were not different between alcohol and 2% sucrose

rats (presses: t(145) = 0.040, p = 0.968; breakpoint: t(60) = 0.608,

p = 0.546; both unpaired t test). However, although the levels

of responding for 10% alcohol and 2% sucrose were compa-

rable, the breakpoint for 2% sucrose after abstinence was not

reduced by 1-EBIO in the NAcb core (Figure 6B and Table S4;

medium 1-EBIO: n = 13; high 1-EBIO: n = 11; Kruskal-Wallis

statistic = 3.460, p = 0.177). Lever pressing for 2% sucrose

during the progressive ratio session also showed little effect of

intracranial 1-EBIO (Figure S4). Thus, intra-NAcb core SK activa-

tion significantly reduced motivation for alcohol but had no effect

on motivation for sucrose at sucrose concentrations that elicited

greater (10%) or similar (2%) levels of responding as alcohol.

We should note that there was a trend toward reduced break-

point and responding after abstinence with the high 1-EBIO

dose in NAcb core 2% sucrose-abstinent animals (Figures 6B

and S4), NAcb core 10% sucrose-abstinent animals (Figures

6A and S4), and NAcb shell alcohol-abstinent animals (Figures

5B and S4). Accordingly, intra-Nacb core infusion of the high

but not medium 1-EBIO dose reduced the acute locomotor-

activating effects of the psychostimulant cocaine (Figure S4).

Thus, the highest 1-EBIO dose may have reduced the apparent

motivation through more nonspecific effects on motivational or

motoric function, but the medium dose of 1-EBIO only reduced

alcohol breakpoint when infused into the NAcb core. A lack of

general motor impairment by the medium dose of 1-EBIO is

also supported by no differences in inactive lever responding

under progressive ratio (Table S5). Together, these data support

the hypothesis that neuroadaptations in NAcb core SK after

alcohol and abstinence allowed the SK activator 1-EBIO to

reduce the motivation expressed to obtain alcohol but not

sucrose.
To determine whether 1-EBIO inhibition of motivated respond-

ing was particular to alcohol in general versus sucrose, we exam-

ined the effect of NAcb core 1-EBIO on the motivation expressed

to obtain alcohol after only 24 hr abstinence, a time point equiv-

alent to that experienced during the daily self-administration

training. However, the breakpoint for alcohol during self-admin-

istration was not significantly reduced by 1-EBIO microinjection

into the NAcb core (Figure 5D and Table S4; n = 16 for all groups;

Kruskal-Wallis statistic = 3.796, p = 0.150), suggesting that

1-EBIO reduction of alcohol breakpoint after abstinence was

not simply an effect of alcohol intake per se.

DISCUSSION

Our results suggest that reduced SK regulation of AP firing in the

NAcb core after longer-term alcohol self-administration and

protracted abstinence may represent a critical regulator of moti-

vation for alcohol after abstinence. AP firing ex vivo was

enhanced in neurons from the NAcb core but not the NAcb shell

or lateral DStr after alcohol self-administration and abstinence,

with no change in NAcb core firing after sucrose self-administra-

tion and abstinence. Firing and voltage-clamp analyses revealed

that enhanced NAcb core excitability after alcohol and absti-

nence was due to reduced SK channel currents, with a concur-

rent reduction of NAcb core SK3 but not SK2 subunit protein

expression. Further, SK activation with the positive modulator

1-EBIO suppressed firing ex vivo to a greater extent in NAcb

core neurons from alcohol- versus sucrose-abstinent animals.

SK activation with 1-EBIO in the NAcb core in vivo significantly

reduced the motivation expressed to obtain alcohol after absti-

nence. In contrast, NAcb core 1-EBIO did not reduce motivation

for sucrose, and 1-EBIO in the NAcb shell and lateral DStr did not

alter alcohol seeking, at doses that significantly reduced alcohol

seeking in the NAcb core. This suggests that the 1-EBIO-medi-

ated reduction in the motivation expressed to obtain alcohol

did not occur simply through nonspecific motor or motivational

impairments. Thus, altered SK channel function in the NAcb

core represents a crucial mechanism that facilitates motivation

for alcohol after abstinence.

Understanding the molecular mechanisms that develop in

relation to repeated drug self-administration and abstinence is

a critical step in identifying potential therapies for relapse, since

these neuroadaptations can potently facilitate drug seeking.

Here, we identified a relationship between SK function and

motivation for reinforcers, whereby intracranial infusion of SK

activators only altered seeking behavior under conditions where

SK function measured ex vivo was reduced, namely in the NAcb

core of alcohol-abstinent animals. AP firing is the predominant

mechanism for neuronal transmission of information, and phasic

NAcb core firing in relation to behaviorally relevant stimuli (Carelli

and Wightman, 2004; Nicola, 2007; Schultz, 2004), including

increased firing after abstinence from cocaine (Hollander and

Carelli, 2007), is particularly interesting given that drug-related

stimuli can potently drive relapse in rodent models of addiction

(Epstein et al., 2006; Kalivas and McFarland, 2003; Katner and

Weiss, 1999) and in human addicts (Larimer et al., 1999;

Sanchis-Segura and Spanagel, 2006). Although the impact of

drug-related stimuli can be studied using operant models where
Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc. 689
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responding for the drug is extinguished before examining

whether drug-related stimuli can reinstate responding (Kalivas

and McFarland, 2003; Sanchis-Segura and Spanagel, 2006),

we utilized a model where animals underwent protracted absti-

nence before relapse testing, since human addicts may not

undergo explicit extinction of drug-related stimuli and behaviors

(Epstein et al., 2006; Sanchis-Segura and Spanagel, 2006).

Increasing motivation to obtain alcohol across abstinence,

termed the alcohol deprivation effect, has been considered

a model for pathological or aberrant alcohol seeking and relapse

(Heyser et al., 1997; Sanchis-Segura and Spanagel, 2006;

Sinclair and Senter, 1968). Although speculative, motivation for

alcohol after abstinence in the paradigm used here persists

when alcohol-related cues are present but access to alcohol is

not allowed; however, responding is greatly reduced when

both alcohol-related cues and alcohol are removed (Bowers

et al., 2008), suggesting the importance of alcohol-related cues

in maintaining motivation for alcohol (Bowers et al., 2008), and

previous studies have highlighted the importance of the NAcb

core in many cue-related behaviors (Cardinal et al., 2002; Carelli

and Wightman, 2004; Epstein et al., 2006; Everitt and Robbins,

2005; Kalivas and McFarland, 2003; Kelley, 2004; Mogenson

et al., 1980). Also, although the levels of alcohol and sucrose

intake in the present study were relatively moderate compared

to those in other studies demonstrating the development of

physical dependence (Table 1; Avena et al., 2008; Bell et al.,

2006), we observed enhanced motivation for alcohol during

abstinence compared to animals without abstinence (Mann-

Whitney U = 113.0, p = 0.044, see also Bowers et al., 2008).

Since activation of NAcb core SK channels reversed the motiva-

tion expressed to obtain alcohol during abstinence, with little

effect on motivation for sucrose, neuroadaptations in NAcb

core SK channels represent critical modulators of maladaptive

motivation for alcohol after abstinence.

NAcb shell AP firing ex vivo was not altered after alcohol and

abstinence, and NAcb shell 1-EBIO infusion did not alter the

motivation expressed to obtain alcohol at doses that reduced

alcohol seeking when injected in the NAcb core. This is consis-

tent with the possibility that the NAcb shell generally plays little

role in well-learned appetitive behaviors and instead is impli-

cated in novelty and primary reward and in some forms of

learning, including in relation to Pavlovian stimuli (Cardinal

et al., 2002; Everitt and Robbins, 2005). However, the NAcb shell

is also implicated in drug-primed reinstatement of cocaine

seeking (Schmidt et al., 2005), and the lack of role of the NAcb

shell observed here suggests that the primary reinforcing effects

of alcohol may not be required to maintain motivation expressed

to obtain alcohol after abstinence. Perhaps more surprising is

that, despite more than 40 continuous days of alcohol self-

administration, which could recruit habit circuitry (Everitt and

Robbins, 2005), SK activation with 1-EBIO in the lateral DStr

did not reduce the motivation to seek alcohol after abstinence,

and lateral DStr AP firing was not altered after alcohol and absti-

nence. A recent study found that the NAcb core and DStr can

interact to maintain habitual behavior (Belin and Everitt, 2008),

and it is possible that more potent inhibition of the lateral DStr

could reduce alcohol seeking. In addition, brain areas other

than the striatum also likely regulate motivation for alcohol
690 Neuron 65, 682–694, March 11, 2010 ª2010 Elsevier Inc.
(Spanagel, 2009). For example, decreased SK function in VTA

dopamine neurons after repeated passive alcohol exposure

enhances burst firing (Hopf et al., 2007), which could enhance

motivation for alcohol by increasing NAcb dopamine levels

(Spanagel, 2009). Interestingly, SK3-deficient mice show ele-

vated striatal dopamine levels and altered dopamine-dependent

emotional behaviors (Jacobsen et al., 2008); this could occur

through reduced midbrain SK3 levels leading to increased

dopamine release or through enhanced excitability in other brain

areas. However, the observation that a more moderate reduction

of firing by a NAcb core SK activator was able to significantly

decrease motivation for alcohol supports the importance of

NAcb core SK neuroadaptations in regulating the motivation to

obtain alcohol after abstinence.

Interestingly, NAcb core 1-EBIO did not alter motivation for

sucrose, even though the NAcb core can regulate sucrose

seeking under some conditions (Bari and Pierce, 2005). We

hypothesize that an inability of 1-EBIO to alter reward-seeking

behavior, even though SK activation with 1-EBIO reduced firing

somewhat ex vivo, could in part reflect a floor effect where the

1-EBIO influence on firing is more moderate under conditions

of strong basal SK function. These results also suggest that

NAcb core 1-EBIO inhibition of alcohol seeking arose from a

reduction in the motivation for alcohol rather than a global,

nonspecific reduction in motor or motivational capacity. Further,

although SK channels have been localized to presynaptic gluta-

matergic terminals in brain regions other than the striatum (Brosh

et al., 2007), the SK antagonist apamin did not alter the amplitude

of evoked excitatory postsynaptic potentials (EPSPs) in the

NAcb core of naive rats (–0.7% ± 5.1% change in EPSP ampli-

tude with apamin; t(6) = 0.385, p = 0.714, paired t test; n = 7),

suggesting that NAcb core SK did not regulate glutamate release

and, thus, that the in vivo 1-EBIO effects reported here are more

likely mediated by postsynaptic SK channels. In addition,

although our preliminary waveform analyses suggested that SK

neuroadaptations contribute prominently to changes in NAcb

core firing, we cannot unequivocally rule out the possibility that

neuroadaptation in channels other than SK also contributed,

especially in vivo. Although NAcb core firing has been studied

in vivo during ongoing alcohol self-administration (Janak et al.,

1999), and SK changes ex vivo lasting several days after learning

have been observed (Brosh et al., 2007), our study links the

molecular changes in potassium channel function in a particular

brain region, the NAcb core, to an enhancement of drug-seeking

behavior.

Decreased NAcb core SK currents after alcohol and absti-

nence could reflect reduced SK subunit expression or, given

SK activation by calcium, decreased calcium flux into NAcb

core neurons (Bargas et al., 1999). SK3 subunits are expressed

at high levels in the naive NAcb core (Sailer et al., 2002; Stocker

and Pedarzani, 2000), and SK3 but not SK2 subunit protein

expression was reduced during abstinence from alcohol, which

likely contributed to the decreased SK currents and increased

excitability in the NAcb core that is postulated to facilitate the

motivation to obtain alcohol. Thus, we consider it more likely

that NAcb core neurons from alcohol-abstinent animals con-

tained fewer SK channels, which reduced overall SK function

and enhanced excitability, but that the remaining SK channels
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in alcohol neurons exhibited normal properties. Also, if reduced

SK function were due to decreased calcium sensitivity of SK

channels, the effect of 1-EBIO on firing would likely be reduced

rather than enhanced in alcohol- versus sucrose-abstinent

animals. Instead, we hypothesize that a reduced 1-EBIO effect

on firing in sucrose-abstinent animals reflected a floor effect

where strong basal SK function decreased the ability of 1-EBIO

to further reduce firing. Thus, our results suggest that decreased

NAcb core SK function after alcohol and abstinence reflected

reduced SK3 subunit levels. However, the mechanism under-

lying the reduced SK3 protein expression after alcohol and absti-

nence remains unclear. Genetic regulation of SK subunits is

generally poorly understood. SK3 subunit gene expression can

be increased through estrogen receptor activation in vitro (Bosch

et al., 2002; Jacobson et al., 2003), and SK2 subunit gene

expression can be decreased by glucocorticoids acting through

NFkb (Kye et al., 2007). Although acute estrogen can positively

influence alcohol seeking (Ford et al., 2004), long-term alcohol

exposure can reduce estrogen function (Dees et al., 2000). A

similar pattern is apparent for NFkB (Okvist et al., 2007) and

perhaps other regulators of gene expression, such as CREB

(Spanagel, 2009). Since the acute reinforcing effects of alcohol

that sustain self-administration can occur through a number of

molecular targets, and self-administration could in part be sus-

tained by conditioned responses mediated by receptors for

several neurochemicals (Spanagel, 2009), it is challenging to

identify a priori how acute alcohol exposure induced the NAcb

core SK neuroadaptation after alcohol and abstinence.

However, since the degree of SK neuroadaptation did not corre-

late with the level of alcohol self-administration prior to absti-

nence, we speculate that changes in NAcb firing after alcohol

and abstinence may reflect associative learning. For example,

given the important role for the NAcb core in appetitive learning

(Kelley, 2004; Spanagel, 2009), signaling systems in the NAcb

that maintain alcohol self-administration through rewarding or

conditioned effects could secondarily cause genetic changes.

Future experiments are required to address the molecular,

genetic, and behavioral interactions that may lie upstream of

reduced SK3 protein expression.

In conclusion, we propose that reduced NAcb core SK regula-

tion of firing represents a crucial mechanism underlying the

heightened motivation to seek alcohol. Our evidence that the

behavioral efficacy of SK activators is dependent upon an

alcohol-induced decrease in SK activity, coupled with the

behavior- and brain-region-specific reduction in alcohol seeking

by positive SK modulators, suggests that positive SK modula-

tors represent a promising therapeutic intervention against

excessive alcohol drinking. Our data are particularly exciting

because the FDA-approved drug chlorzoxazone, which has

been used for more than 30 years as a centrally acting myorelax-

ant (Chou et al., 2004), can activate SK channels in a similar

manner as 1-EBIO (Cao et al., 2001). It is important to note that

SK is not the only target of chlorzoxazone (Dong et al., 2006)

and that this molecule can present a variety of clinical side

effects (Chou et al., 2004). Still, this FDA-approved compound

provides an unexpected and very exciting opportunity to design

human clinical trials to examine whether chlorzoxazone reduces

excessive or pathological alcohol drinking, and our study high-
lights the potential of SK channel activators as therapeutic

agents against pathological alcohol consumption.

EXPERIMENTAL PROCEDURES

All behavioral methods were conducted in accordance with the Guide for the

Care and Use of Laboratory Animals as adopted by the National Institutes of

Health and the Ernest Gallo Clinic and Research Center’s Institute for Animal

Care and Use Committee and were essentially the same as described in

Bowers et al. (2008).

Self-Administration Training

Adult male, Wistar rats (250–275 g, Harlan, Livermore, CA) were individually

housed and maintained on a 12 hr light/dark cycle (lights on 7 am) with food

and water available ad libitum unless stated otherwise. Rats slated for alcohol

training were given home cage alcohol (10%, w/v) ad libitum as their sole liquid

source for 5 days. Rats slated for sucrose training were water deprived for

2 days. Afterward, rats were placed in standard operant chambers (Coulbourn

Instruments, Allentown, PA) fitted with a 100 ml dipper cup, flanked by two

levers, each with a cue light. Chambers were outfitted with a house light,

cue tone, and sound-attenuation cubicles that contained fans. Shaping of

lever pressing occurred over one to three 15 hr overnight sessions for 10%

sucrose (w/v) on an FR-1 schedule of reinforcement. Depression of one lever

(active) resulted in delivery of the cue light, tone, and liquid reinforcement in a

lick-contingent manner (where access to the reinforcer was terminated if

licking did not commence within 2 s). Depression of the other lever (inactive)

yielded no programmed consequence. Licks at the dipper were recorded

with a lickometer to verify that lever presses were followed by consumption

of the reinforcer. Rats were randomly assigned to right or left active lever prior

to shaping. Rats exhibiting more than 400 active lever presses in the overnight

session were considered to have learned the lever-pressing paradigm.

After these overnight sessions, rats were allowed a 45 min session to

respond for 10% sucrose (FR-1) and then a 30 min FR-3 session for 10%

sucrose the following day. After these sessions, sucrose-drinking rats lever

pressed for 10% or 2% sucrose (30 min/day, FR-3) for 42–50 continuous

days. Training for alcohol-drinking rats proceeded on a sucrose-fading

method, with 1–2 days each of responding for a 10% alcohol solution contain-

ing sucrose at 10%, 5%, 2.5%, then 1% (30 min/day, FR-3). After this fading

procedure, rats lever pressed for 10% alcohol for 42–50 additional continuous

days (30 min/day, FR-3). After 42–50 days of sucrose only or alcohol only self-

administration, rats were left in their home cages for 3–5 weeks, at which time

brain slices were prepared for patch-clamp electrophysiology or behavioral

responding for sucrose or alcohol under progressive ratio was examined.

Surgery

Implantation of microinjection cannulae was performed as previously

described (Bowers et al., 2008) except that cannulae were aimed 1 mm above

the target region with the following coordinates relative to bregma with a level

skull: NAcb core +2.2 mm AP, ±2.41 mm ML, and �6.18 mm DV, q 8� angle

away from midline; NAcb shell +2.2 mm AP, ±2.35 mm ML, and�6.25 mm DV,

q 8� away from midline; lateral DStr +1.0 mm AP, ±3.6 mm ML, �4.0 DV.

Cannulae were obturated (33 g, stainless steel) and monitored daily. Surgery

occurred 1 week into abstinence, except for animals tested with 1-EBIO during

self-administration, where surgery occurred 2.5–3 weeks before progressive

ratio testing. See Figure S5 for representative histology.

Progressive Ratio Assessment of Motivation

Microinjection was performed as previously described (Bowers et al., 2008)

except that freshly prepared 1-EBIO or vehicle (10% DMSO in 0.9% NaCl)

was injected in 0.75 ml per side over 2 min. Microinjectors were left in place

for an additional 2 min to prevent reflux and to facilitate diffusion, after which

time injectors were removed, obturators replaced, and animals returned to

the home cage for 6 min. After this time, the motivation to seek alcohol or

sucrose was assessed. Animals were tested under PR with one dose of

1-EBIO, or two different doses of 1-EBIO, in a counterbalanced manner,

with 1 week home-cage abstinence between sessions. Animals were assigned
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to particular doses based upon prior self-administration levels so that self-

administration levels were balanced across dose groups. No ordering effects

related to exposure of animals to multiple doses were observed (p > 0.05 for all

experimental groups, two-way repeated-measures ANOVA).

Breakpoint under PR was determined exactly as described in Bowers et al.

(2008). Briefly, the PR session was initiated by presentation of a compound cue

(extension of the levers, illumination of the stimulus light over the active lever,

tone sounding, and illumination of a raised dipper cup filled with alcohol or

sucrose). In addition, rats were presented with an alcohol odor cue (�15 ml

of �87% alcohol sprinkled in the bedding beneath the previously alcohol-

paired lever) for 2 min before presentation of the compound cue; the bedding

of sucrose rats was sprinkled with water. After the compound cue, responding

proceeded under a PR schedule that was the same for alcohol and sucrose

rats. Briefly, after the compound cue, rats could lick the dipper cup, press

a lever, or do nothing. If rats licked first (in�50% of rats), a PR schedule of rein-

forcement of 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 17, 20, 22, 25, 28, 32, 36,

40, 45, 50, etc., ensued. If rats pressed first (in�50% of rats), a PR of 1, 2, 2, 3,

4, 5, 6, 7, 9, 10, 12, 13, 15, 17, 20, 22, 25, 28, 32, 36, 40, 45, 50, etc., ensued. If

the rat chose to do nothing, a 20 s timeout period occurred, and the rat was

re-cued with the compound cue for up to 20 iterations. In the <2% of rats

that required re-cue, one or two re-cues were sufficient to elicit a response.

Breakpoint was defined as the number of presses contained in the last,

successfully completed ratio in either a 1 hr session or after 15 min of nonres-

ponding, whichever came first. >75% of rats ended the session early by omit-

ting response for 15 min. Null responses, where an animal completed the

required number of lever presses but did not lick to receive the reinforcer,

were not counted toward the breakpoint.

Slice Preparation

Brain slice preparation was performed as described in Martin et al. (2006) and

are described in detail in Supplemental Experimental Procedures.

Ex Vivo Electrophysiology

Electrophysiology experiments were performed using previously described

methods (Hopf et al., 2003, 2007) and are described in detail in Supplemental

Experimental Procedures.

Immunoblotting

SK3 and SK2 subunit protein expression was assayed in the NAcb core during

abstinence as previously described, including Ponceau S visualization

(Bowers et al., 2008), except that 15 mg protein sample was transferred to

0.22 mm pore nitrocellulose prior to incubation with either a SK3 N terminus

antibody (1:800, Alomone, Jerusalem, Israel) or a SK2 antibody C-terminal

(1:800, Alomone), overnight at 4�C in 4% milk, then rinsed and probed with

an IR800-labeled, anti-rabbit secondary (1:10,000, Rockland, Gilbertsville,

PA). To control for loading, transfer, and blotting conditions, membranes

were cut after transfer and probed for the integral ER membrane protein

calnexin (1:3000, Stressgen, Ann Arbor, MI) followed by the IR800 antisera.

Calnexin has been used in this capacity before, since expression was shown

not to change during abstinence from cocaine or alcohol (Bowers et al.,

2004, 2008). Loading concentration and antisera dilution were determined to

be within the linear range of detection using an Odyssey Infrared Imaging

System (Li-Cor Biosciences, Lincoln, NE). Blots were quantified by integrated

intensity, a measure of pixel density independent of image resolution and the

size of the bounding box drawn to define lanes and bands. SK1 subunit

expression was not examined due to very low expression in the striatum (Sailer

et al., 2004; Stocker and Pedarzani, 2000) and lack of a suitable commercially

available antibody.

SK3 and SK2 protein expression was compared between alcohol-abstinent

animals and naive animals. SK protein expression was not measured in

sucrose-abstinent rats, since SK regulation of firing, measured using electro-

physiology ex vivo, was nearly identical in naive and sucrose-abstinent

animals. Thus, these more precise electrophysiological data suggest that

immunoblotting would not detect differences in SK subunit protein expression

between sucrose-abstinent and naive rats, although we cannot completely

rule out the possibility that sucrose-abstinent animals may also exhibit altered

SK subunit expression.
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Statistics

All data were shown as mean plus or minus the standard error of the mean.

Unless otherwise indicated, all statistics were performed using a one-way

ANOVA followed by a Bonferroni correction or a two-way repeated-measures

ANOVA followed by a Tukey post-hoc comparison. Because active lever-

pressing requirements under PR were generated from an exponential function

and were not normally distributed, data from the PR test sessions were

analyzed using the nonparametric Mann-Whitney rank sum test or Kruskal-

Wallis test with a Dunn’s post-hoc comparison. Statistics were calculated

using SigmaStat 3.1 (Systat Software, San Jose, CA).
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